Lecture 1:

We will talk about symmetry and use that to motivate the definition of a group. Here are the
symmetries of a triangle.
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Notice some key properties:

- IfIdo one symmetry and then another symmetry, | get a symmetry.

- The do nothing symmetry exists, and we call it the identity.

- lcan do symmetries in reverse. For example, | can pick up a triangle, move it around and that is
a symmetry, and then reversing that movement is also a symmetry, as expected.

This motivates the definition of a group. Infinite groups but we can think of finite groups as a set of
symmetries. A group is a set, with a binary operation which | will call *, which satisfies the following
properties. Note that a binary operation is an operation that takes 2 things and outputs a third thing.
For example, multiplication in the real numbers is a binary operation, because | can do

(one number)*(another number)=(a third number).

A group is a set with a binary operation such that:

- Foranya, binthe group, a*bis in the group.

- Thereis a(n) (right) identity element, ie an element e such that a*e=a for any a in the group. We
usually write e to mean identity.

- Allelements in the group have (right) inverses, ie for any a in the group there is an element b
such that a*b=e

We can think of * as composing symmetries (doing one after the other). However, there is another rule
for a group which is associativity, ie that (a*b)*c always equals a*(b*c). This is obvious in the case of
symmetries: If | do symmetry 1 then do symmetry 2 followed by symmetry 3, vs if | do symmetry 1
followed by symmetry 2 then do symmetry 3, | will end up with the same result. This means we can
move brackets around when doing algebra with groups, which is nice. Groups can be thought of
algebraically or in terms of symmetries, and generally we do it algebraicly for infinite groups and as
symmetries for finite groups.



However, groups are NOT commutitive in general. We cannot say that a*b always is equal to b*a. For
example, one can check that doing one of the reflections followed by a rotation yields a different
ending state than doing the rotation first then the reflection in the triangle case. A commutative group
is called an abelian group.

We would like to show that identity elements of groups work both ways, ie that e*a=a for any a, and
the same for inverses, ie that if a*b=e then b*a=e as well. We also would like to show that the identity
elementis unique, so that we can justify saying “the identity element”, and also that inverses are
unique. We have to be very careful, as if we define that the identity is such that e*a=a for any a but the
inverse of a is the element such that a*b=e, then this is a left identity and a right inverse, and this
allows for some sets that do not fit the standard definition of groups. For example, if we define a group
{a,b} with the binary operation defined by a*b=b (ie always pick the element on the right), then this is
associative, a is a leftidentity, a and b have a right inverse in the form of a, but it does not satisfy the
standard definition of a group as it is not the case that we have a right identity or a left inverse.

A group can be defined by having a right identity and right inverse (as we did above), or a left identity
and a left inverse (just put the elements in reverse order in the proofs we will do that they are both in
fact two sided), or can require them in the first place to be two sided.

Also, we often don’t explicitly write * down, as it is implied, as we will do now in the proof.
Theorem 1: If ab=e then ba=e
Proof:

b=be (by identity) = bab (since we assume ab=e). There exists an element c in the group with bc=e.
Multiplying c on both sides of b=bab gives bc=babc, but bc=e so we have that e=bae, but since
anything*e=anything, we have that ba=e.

Theorem 2: ea=a for any a.

Proof:

ab=e for some b in the group, But then ba=e by theorem 1, so ab=e=ba, so ea=aba=ae=a, so ea=a.
Theorem 3: Inverses are unique, ie if ab=e=ab’, then b=b’.

Proof:

b=be=bab’=eb’ (since ab=e so ba=e by theorem 1) =b’ (by theorem 2).

Theorem 4: Identites are unique, ie if ae=ae’=a, then e=¢e’.

Proof:

a has aninverse, lets call that b, thn e=ba=b(ae’)=(ba)e’ by associativity=ee’=e’ because e is an
identity, therefore e=¢e’.

Going forward, we will use these theorems all the time and not necessarily mention it.

We typically write the inverse of a as a™?!

, and we write groups as (The set, the operation) or (the set,
the operation, the identity). For example, the integers form a group under addition with identity 0, and

we can write it as (%, +) or (Z, +, 0).

Lecture 2:



The inverse of an inverse is the original element. This is because a is an element such thata ta = e.

1 -1 -1

Wedefinea® =a*ax*a..xawithna’s,anda=a 1*al*xalx*..xa" 1. Wecan easily show

that this satisfies the obvious properties, ie
atMm =qagxaxa..xawithntmas=(axa*a..xa)[na's]*(axa*a..xa)[ma's] = a™a™.

If mis negative and n-m is positive, then

n-— 1 1 1

av™m =axa*a..xawithn-mas=(a*xax*xa..xa)[nd's]*(at*alt+xal..xa ) [mterms] =

a™a™™, since all the inverse terms cancel with a non-inverse term. If n-m were negative, or we had -n-

m, we could just invert everything and be fine.

aTL

™ =a=x*ax*a..xa[nma's] which can be split into n sets of m a’s meaning we get that this is equal
to (a™)™. If n or m were negative, then we could just either flip the sign on n and invert both a™™ and
(@a™)™, or flip the sign on m and invert both a™™ and (a™)" since inverting each a™ term is the same
as inverting the whole thing. If n and m are both negative, we have that a™ = (a™™) ™" as flipping the
sigh of n and m on the right hand side is the same as inverting it twice which makes you go back to

where you started.

Of course, a® is defined to be the identity element, as a® = a'™! = aa™! = e so everything can
actually work out.

Some examples of groups and non-groups:
The group that is literally just {e} is called the trivial group.

The set{Z, +, 0} is a group as addition is associative, integers are closed under addition, and -x is an
inverse for any x. Also {Q, +, 0}, {R, +, 0}, {C, +, 0} are all groups. These are examples of infinite groups.

The set{N, +, 0} is not a group due to the lack of inverses.

{Z, *, 1} is not a group for the same reason. However {Q, * 1} is almost a group except for the fact that 0
has no inverse. However {Q\{0}, *, 1} is a group.

We already encountered the group of symmetries of a triangle. This group is called S3 or Dy, it will be
later that we get more intuition for why.

C, = {z € C: z™ = 1,%,1} is a group under multiplication. It is turns out that it is isomorphic (meaning

it’s structurally the same, we will see what this precisely means later) to the group
2ikm
{0,1, 2,3, ...n-1, +(mod n), 0}, where e n in the first group corresponds to k in the second group.

Definition: Order
The order of a group G is the number of elements in G. This is denoted o(G) or |G| or #G.
Lecture 3:

First, we need a definition, which we probably also come across in the numbers and sets course. A
bijection is a function such that every output is mapped to exactly once, so essentially a one-to-one
correspondence. And a permutation is a bijection from a set to itself, which is essentially just a re-
ordering of the elements of the set.



For a set x, Sym(x) is notation for the set of permutations of x. It turns out that under composition, ie
doing one permutation after the other, this forms a group. We can prove this by checking each of the
axioms.

his image shows algebraic working that

is handwritten to prove that the symmetric group is a group.

S, is notation for the group of permutations of any set with n elements, such as {1, 2, 3, ... ,n} under
composition. These groups are called symmetric groups.

Example: S5 is the same as the group of symmetries of a triangle as you can think of it as rearranging
the vertices, but S, is not the same as the group of symmetries of a square because if you swap two
adjacent vertices you do not end up with a symmetry of a square that you can get by keeping it rigid
and moving it around in space. However, the group of symmetries of a square is a subgroup of S,,
which foreshadows the next definition. S5, is the group of shufflings of decks of cards.

It turns out that the order of S,, is n!. To see why, a hint is: Think about how many places there are to
map the first element to, then how many places are left to be able to map the second element to, and
so on.

Note: From now on we won’t always specify the operation of a group when we talk about a group,
provided itis implied.

Definition: A subgroup is what you would expect it to be — a subset of a group that is itself a group
under the same operation. For example, the group of rotations only of a triangle is a subgroup of the
group of symmetries of a triangle, and the group of symmetries of a square is a subgroup of S,. To
check that a subset is a subgroup, you must check the axioms, ie that

- Theidentity is in the subgroup



- Allelements in the subgroup have their inverse in the subgroup
- Foralla, binthe subgroup, a.bis in the subgroup.

Note that associativity is trivially inherited.

Example: The trivial group is a subgroup of every group, and every group is a subgroup of itself. Any
other subgroup is called a proper subgroup

Notation: We write H=G if H and G are groups with H a subgroup of G. We often do use a capital H to
refer to subgroups.

Example: Under addition, Z<sQ<R<C.

Example: For n a non-negative integer Define nZ as the set of all multiples of nin Z, for example
3Z...,-9,-6,-3,0,3,6,9,...}

nZis indeed a group under addition because

- ldentity (0)

- Closure (Any 2 elements in nZ is of the form an and bn with a, b integers, and an+bn=(a+b)n
with a+b an integer, which is in nZ.

- Inverses (For any xin nZ -x is in nz. This is because an and (-a)n are both in nZ for all integers a)

- Associativity (Addition is associative)

Theorem: All subgroups of Z are of the form nZ with n a non-negative integer.

Proof: Let H be a subgroup of Z. The case where H is the trivial group is just H={0} which is 0Z.
Otherwise, there exists a non-zero element. If it is negative, then its inverse must be positive, meaning
there is always a positive element. There is also a least positive element, and the justification for this
is that if there were not a least positive element then there would be an infinitely decreasing chain of
positive elements, which is not possible since they are integers so the length of such the chain cannot
be longer than the first element in the chain. We have learned in numbers and sets that we have to be
careful about assuming that something like a “least positive element” exists. However, it does.

Let the least positive element of H be n. Then 2n, 3n, 4n, ... are in H by closure, then so are -n, -2n, -3n,
... by inverses, and so is 0 by identity. If this is all of H, then we have nZ so we are done, but we will
prove that in fact, we must have nZ.

Suppose there exists an element x in H with x not a multiple of n. Then by the division algorithm, we
can write x=kn+r with k an integer and 0<r<n (strict inequalities since otherwise x would be a multiple
of n). But then since xis in H, x-kn is in H by closure, and x-kn=r soris also in H, but nis the least
positive elementin H by assumption, but r is positive and less than n, so this is a contradiction. So
done.

Theorem (Not mentioned in the lecture but I’'ve seen it mentioned in IA groups notes before and itis
very useful): if H is a subset of G and the identity is in Hand foralla, binH, ab~tisin H, then His a
subgroup of G.

Proof: Identity and associativity are immediate. Inverses because if ain Hthen ea™!is in H since e is in
H and with {e, a} our 2 elements we have ea™! in H by the second property. Closure is because if a and
b are in H, then we just showed that so is b1, therefore sois a(b~1)~! = ab. An analagous result can
be proven the same way for the case that e, a™1b being in H is the condition.



Lecture 4:

Theorem: if H and K are subgroups of G then so is HNK

Proof: | will not go through the details, however it is now hard to check the axioms.
Notation:

For a set x, <x> means the smallest subgroup containing the set x. Equivalently, it is the intersection of
all subgroups of a group which contain the entire set. This is called the group generated by the set x.

Of course, the minimal group generated by a setis the set of products of a bunch of not necessarily
distinct elements of the set with their inverses.

There are many functions from C to C, however any random such function is not very interesting.
However, we care about functions that preserve distance.

Definition: An isometry on C is a function f from C to C such that for any 2 pointsaand b in C,
|a-b|=f(a)-f(b). In other words, f preserves distances.

The set of isometries of C is a group since the identity/do nothing function is an isometry, the inverse
of anisometry is isometry, function composition (the implied operation) is associative, and the
composition of isometries is an isometry. This is called the isometry group of C.

Lemma:if |y; — x4 = |y, — x;] and |y; — x3| = |y, — x| then y; — y, is perpendicular to x; — x,.
Proof: We will do this visually.

Y1

X1 X2

Y2 This image shows the kite lemma visually.

Now we observe that the perpendicular bisector of a line segment is those points that are the same
distance away from both ends of the line segment, which explains why the lemma is true.

Theorem: If a, b, c are not colinear, and there is an isometry that sends a, b and c to themselves, then
this isometry is the identity function.

Theorem: Suppose that the hypotheses above are satisfied but that fis our isometry and f(d)#d.
Then, since fis anisometry and sends a b and c to themselves, |f(d) — f(a)| = |d — a| = |d — f(a)]
Now let y;: = d and y,: = f(d)

Andinthe case where x;:=aandx,: = b

Then the kite lemma tells us that the line through a and b is perpendicular to the line through d and
f(d). Butif x;: = a and x,: = ¢ then the line through a and c is also perpendicular to the line through d
and f(d), contradicting the fact that a, b and c are not colinear.

Lecture 5:



We will investigate the group D,,, which is the group of symmetries of an n-sided polygon.

We can interpret this as the group of isometries of C that preserves the positions of the vertices but
shuffles them around.

The lecturer got stuck on a lot of random details, but essentially this group has size 2n because:

1. There are n choices of where to move the point 1 to in any such isometry
2. There are 2 choices of where to place the adjacent vertices
3. Thethree point lemma from last lecture fixes the rest

Theorem: Let s be a reflection (ie, each pointis sent to its complex conjugate) and r be a rotation (ie,
2im
each pointis multiplied by e , then sr* = r~ks

2ikm 2ikm —2ikm
Proof:te n z=e n zZz=e n Z

Lecture 6:

Defintion: Let (G, .) and (H, *) be groups. Then a function ¢ from G to H is called a homomorphism if
forallaand bin G, ¢(a.b)=d(a)*d(b).

Definition: An isomorphism is a homomorphism which is a bijection. Essentially if two groups have
an isomorphism between them then they are structurally the same. We say these groups are
isomorphic. | will often talk about groups being the same when they are isomorphic.

Example: A function from groups G to H that sends everything in G to the identity of His a
homomorphism, butitis trivial.

Example: Itis easy to see that if H is a subgroup of G, then a function H to G that sends all elements to
the corresponding elementin G is a homomorphism.

Example: The set of square matrices of a certain size with non-zero determinantis a group. The
determinant function is a function from these matrices to the non-zero real numbers thatis a
homomorphism because for matrices A and B, det(AB)=det(A)det(B)

Theorem: Let ¢ be a homomorphism G to H. Then ¢p(e;) = ey

Proof: ¢p(e;)p(es) = d(eqe;) = d(es). Therefore ¢p(e;;) is the identity, since it can be multiplied by
itself and not change.

Theorem: Let ¢ be a homomorphism Gto H. Then ¢p(g™1) = ¢p(g) !

Proof: p(9)p(g™1) = p(gg™) = ¢p(e;) = ey, thus p(g~1) is the inverse of ¢p(g).

We write A=B if Ais a group isomorphic to B. Isomorphic groups are considered the same group.
Example:

The group of positive real numbers under multiplication is isomorphic to the group of all real numbers
under addition due to the bijective homomorphism between them defined by the exponential
function.

Some obvious statements:

1. If ¢ is anisomorphismsois ¢!



2. If g and Y are isomorphisms sois ¢ oy
3. =isanequivelence relation as defined in numbers and sets.

Definition: The image of a homomorphism ¢ is the set of stuff ¢ maps to.

Definition: The kernel of a homomorphism ¢ is the set of elements x such that ¢(x) is the identity.
Theorem: Let ¢ be a homomorphism G to G. Then the kernel and image of ¢ are subgroups of G.
Proof:

Image:

e = ¢(e) so the identity is in the image

d(g)~r = p(g1) soinverses of stuff in the image are in the image

¢(a)p(b) = ¢p(ab) so products of stuff in the image is in the image.

Kernel:

¢(e) = e sotheidentity is in the kernel

Ifgisinthe kernel¢p(g) = e =e 1 = ¢p(g)™! = p(g1) so inverses of stuff in the kernel are in the
kernel.

Ifp(a) = ¢p(b) = ethen ¢p(ab) = p(a)p(b) = ee = e so we have closure.

Lecture 7:

Proposition:
i) A homomorphism G to H is surjective if and only if its image is H
i) A homomorphism G to H is injective if and only if its kernel is {e}

This result is useful since it allows us to more easily check if a homomorphism is an isomorphism,
since an isomorphism is a homomorphism that is injective and surjective.

Proof:

i) This is basically just the definition of surjective.

i) Let ¢ be a homomorphism G to H and suppose itis injective. By the definition of injectivity,
only one element can map to the identity of H. Since the identity of G is such an element, it
must be the only one, so the kernel of G is {e}. Conversely, suppose that the kernel of G is
{e}. Then we want to prove injectivity by supposing ¢(a)=¢(b) and showing that this implies
a=b. So, if d(a)=d(b) then ¢p(ab™1) = e by homomorphism properties and since the kernel
is just e, it means that ab™! = e so a = b, completing the proof.

Definition: A cyclic group is a group generated by a single element. For example, the n’th roots of 1
2mi

under multiplication are generated by e » . And the integers mod n under addition is generated by 1.

Proposition: In fact, all cyclic groups are isomorphic to either the integers under addition (if they are
infinite) or the integers mod n under addition (Which we call C,, if they have size n for finite n).

Proof:



Let G be generated by g and S be the set of integers k with g¥ = e. If some numberxisin S, then so is -
x since the inverse of the identity is the identity, and 0 is trivially in S, so we can just think about the
positive elements of the set.

If S={0} then we never reach the identity - We define a map from Z to G by sending k — gk. Thisis a
bijection, since all powers of g are mapped to and the kernelis just 0 since nothing else isin S.

Otherwise lety be the smallest positive element of S, allowed by the well ordering principle. Then the
map C, to G by sending k - g* is a homomorphism since k + j(mod y) - gt/ = gk+/™med¥ gince
g” = e. lts kernelis {0} since if something else z was in the kernel smaller thany then g% = 0 with
0<z<y contradicting the definition of y. Its image is the entire group generated by G has only y distinct
elements, since any powers of g can be reduced mod y to something between 0 and y-1, andy
different elements get mapped to. So therefore the proof of the proposition is complete.

The order of an element g which we also write as |g| or o(g) is defined as the smallest power of g that
equals the identity.

1

Proposition: Any group of size 2n with elements 7, s suchthatr™ = e = s?andrs = srlis

isomorphic to Dy,.

Proof: We construct here the cayley table and demonstrate that it is unique. This means that the
element in the cell of the cayley table is equal to the element in the leftmost column on that row times
the elementin the topmost row on that column.

The entries highlighted in yellow of the following cayley table (which | claim is unique) are trivially set
in stone from the definition above. Note that s is not a power of r otherwise the group would have size
n, and thus all elements here are indeed distinct.

s
I

sr srA2  sph3 =oco 5 rr-1 e r 5000 rA-2
I

srf2  srA3 srha Soco sr rr-2 rr-l e

srA-1 | [sra-1s sr Gooa sra-2 r ra2 ra3 5000 e

This image shows the cayley table.

Now we know what multiplying by r on the right will do, so in fact we get some more information for
free.



sr Sra2  sra3 s

SPA2  srA3 srhg e sr =

sra-1 s sr beoo sra-2 r rn2 rr3 scos e

This image shows the cayley table with more things
highlighted as known for sure.

Lemma: r%s = sr™¢

a a

Proof: rsr = s from the table above and therefore st=% = (rsr)r~% = rsr'~%. We can apply this
repeatedly to get sv~% = rsr1™® = 251272 = ... r%s, This fills in the blue cells in the image below and

thus the purple ones since we can multiply by r on the right.

e | e r ra2 ra-1 3 sr sra2 sra-1
r | e rA2  rA3 000 e srA-1 |8 sr a0o0 srA-2
ra2 | A2 A3 rra 0000 r sra-2 _
; | 1 N
|
re-1 =1l r (750= ) sr
I
s s sr sra2 oo sra-1 e r 52 5050 rA-1
I
sr sr sPA2  srA3 oee s 21 e r coes (=72
I
sra2 sra2 srA3 srnd e sr ra-2 RA=T: e e ra-3
|
| &
SRASI) | srA-1 s sr sra-2 r rA2 ra3 e
This image is also of the Cayley table with stuff
highlighted.

Now it remains to prove that sr%s = r~% to get the rest of the column with the blue stuff since
multiplying by r on the right will give us the rest of the table. To show this is easy: Just multiply s on the
left on both sides of the equation r%s = sr~%. So done.

Lecture 8:

Theorem (Lagrange’s theorem): If H is a subgroup of G and G is finite then |H| divides |G|. This lecture
is about this theorem and its proof. The idea of the proof is pretty simple and obvious once you get it.

Definition (Left coset): Let H be a subgroup of G and g be an element of G, then the corresponding left
cosetis the set of elements gh with h in H. The right coset would be defined similarly as the set of
elements hg with hin H and the proofs we will do this lecture would be the same.

G\H is defined to be the set of left cosets with respect to H.
Lemma:

i) The union of cosets in a group with respect to any subgroup equals the entire group
ii) Cosets are either equal or have empty intersection



Proof: If you have been paying attention this will have reminded you of Equivelence relations from
Numbers and Sets. Essentially we will show that the relation a~b if a1b € H is an equivelence
relation and that a~b is equivalent to a and b being in the same coset so that the cosets are actually
the equivelence classes. The lemma will follow from basic properties of equivelence relations, ie that
they partition sets.

First, we will show that if a~b then b is in a’s coset. We know that a~b € H since a~b by assumption
and therefore a(a‘lb) = bisin a’s left coset with respect to H. But then b’s left coset with respect to h
contains b = be since the identity is in H since H is a subgroup of G. Conversely, if b is in a’s coset
then b = ax with xin H, but then since x = a~1b by simple group algebra we have thata b € H. Now
it remains to show that this is an equivelence relation so it can follow that the cosets are indeed
equivelence classes.

Reflexive: a~a sincee = a~'a € H.
Symmetric: If a~b then a™'b € H so by inverses, (a~*h)™! = b~'a € H so b~a.
Transitive: if a~b and b~c then a™b, b~1c € H so by closure a™'c € H so a~c so done.

Lemma: Fixgin G and a subgroup H of G. Then the map H — gH (meaning you multiply everything in H
by g on the left to get the output) is a bijection.

Proof: Immediate from the fact that a bijection is exactly a map which has a left and right inverse from
Numbers and Sets, and such an inverse is given by K — g~ 1K so the original map must be a bijection.

Definition: The index of a subgroup, denoted |G:H| is the number of cosets in G with respect to H.

However, now we know from the previous lemmas that all cosets with respect to H are the same size
and they neatly partition G, and thus |H||G:H|=|G]|, so |H| divides |G]|.

Geometric example of a coset: The set of symmetries of a shape that move a specific vertexto a
specific location. also in D,,, the set of rotations and the set of elements involving a reflection are
cosets as well.

Lets see some examples of why this is useful:

Corollary: The order of an element divides the order of a finite group, because the order of the
subgroup generated by that element equals the order of that element which divides the order of the
group by Lagrange’s theorem.

Corollary: !¢l = gl6<g>lI<g>| = (gl<g>l)|6:<g>| _ plG<g>l — o
Corollary: Groups of prime order must be cyclic and generated by all non-identity elements.

Lecture 9:

Let ¢(n) be the number of integers from 1 to n-1 inclusive that do not have any common factors with n.
For some n, let G be the set of such integers with multiplication mod n. If yis in g, there exists integers
x and m (this is proven in numbers and sets) such that xy+mn=1, so xy=1Tmodn, so xis an inverse toy.
1is an identity and multiplication is associative. Now we just need to check closure: Suppose ab = ¢
and ¢ and n share a common factor: cb™! = a and a is a multiple of ¢ so it also must share the same
common factor which is a contradiction, so c is indeed in the set so it is a group.
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Now we know that for all gin a group, g'*' = e, so in our case this means that if ais coprime ton

(meaning a and n share no common factors), then a®™ = 1modn. This is the Fermat-Euler theorem
which is proven in numbers and sets, but this proof is here to demonstrate that group theory is
actually useful. a?~! = 1modp which is Fermat’s little theorem for prime p is immediate from this.

Now we will talk more about the symmetry side of things by talking about group actions.

Definition: An action of a group G on a set X is a map from G*X to X. We write (g, x) — gx, you can
think of it as what g does to x. It’s like each element of g corresponds to a permutation of the elements
inXx.

Rules for actions:

1. ex=xalways
2. (gh)x=g(hx) always

We write GC'x to mean G acts on x. If gx=x always this is the trivial action.

Example: S,, acts on the set{1, 2, 3, ..., n} such that if fis a permutation in S,, then fx=f(x).
Example: A subgroup acts on the same set as its parent group.

Example: The group of isometries of C acts on C.

Example: D,,, acts on the vertices of a polygon.

Example: All groups act on themselves such that for elements g and x in g, gx=gx, where one side
means the action notation and the other side means g and x are being multiplied within the group.
This is called the left regular action.

Proposition: An action of a group G on a set Xis a homomorphism ¢: G —» Sym(x).
Proof: Suppose GCX. Let t,; be the map from X to X that sends x to gx.
This is a bijection because its inverse is the map that sends x to g~ 1x.

This is indeed an inverse because g~1(g(x)) = g(g~'(x)) = ex = x since we have defined actions to
work this way.

However, t, is now an element of Sym(x) since it is a permutation on x. So define the map ¢: g - t;.
This is a homomorphism because ¢(gh) = (tz) = t, ° ty, since
tgn(x) = (gh)x = g(hx) = t; o ty(x). So done.

Conversely, given a homomorphism ¢: G — Sym(x) we can define an action GC'X with gx = ¢(g)x.
This is indeed an action since (gh)x = ¢(g)¢p(h)x = g(hx) and ex = ¢p(e)x = x.

Theorem (Cayley’s theorem): Every group is isomorphic to a subgroup of a symmetric group.
Furthermore, if G is finite, then G is a subgroup of Sym(x) for some finite x.

Proof: Since GC'G by the left regular action, then this is equivalent to a homorphism ¢: G = Sym(G)
by the previous proposition. Let H be the image of ¢, then since homomorphisms inherit associativity,
send products to products, inverses to inverses and identities to identities so H is a subgroup of
Sym(G). We need to prove that ¢ is an isomorphism: It is surjective since we defined H to be the



image, so we just need to prove that ker(d)=e. If g Is in ker($) then ¢ (g) = e, and since this is the
identity in Sym(g), this means that gx=x for all x in g, thus g=e so done.

The intuitive idea for why the theorem above is true is that each element in G corresponds to a
permutation in G — Multiplying each element in G on the left by that element permutes the elements.

Definition: Suppose GC'X and xeX. Then the orbit of x is the set of all gx with g in G. Example: The orbit
of a vertex in the context of D,,, is the set of places that the vertex can go to under the symmetries,
which in that case is all of them. This is often written as Gx. An action is transitive if any x can be
taken to any other, such as in the case of D,,,.

Definition: If we have the same setup as above, then the stabilizer of x is the elements gin G such that
x=gx. This is often written as G, or Stab;(x). An action is faithful if the every element in g except the
identity does not do nothing to the set itis acting on.

Lecture 10:

Remark: An action G on X is faithful if and only if the associated homomorphism G to Sym(X) is
injective.

Proposition:

i) Suppose G acts on X. Then for any x in X, the stabilizer of x is a subgroup of G.
i) Every element of X is in exactly one orbit, ie the orbits form a partition of X.

Remark: ii) will imply that transitivity is equivalent to the statement “there is only one orbit”.
Proof (i)

To check if a set is a subgroup, we need to check if e is in the subgroup and if ab~! is in the subgroup
for all a and b. I don’t know why the lecturer is checking the axioms individually and never proved this
criterion to save time. Clearly, the identity is in the stabilizer of x since it does nothing to x. Also, ifa
and b are in the stabilizer, they do nothing to x, so ab™?! also does nothing to x. So done.

Proof (ii)

Lets check that being in the same orbit is an equivelence relation. This turns out to be really nice as
the three conditions for an equivelence relation correspond to three of the group axioms:

1. Reflexive —xis inits own orbit because of the identity, so this corresponds to existence of an
identity element.

2. Symmetric - If xisiny’s orbitthenyis in x’s orbit by the inverse of the element that sends y to x,
so this corresponds to existence of inverses.

3. Transitive —If xisiny’s orbitandyis in z’s orbit, then xis in z’s orbit by taking the product of the
element sending z to y with the element sending y to x, so this corresponds to closure.

Example: in D,,, the stabilizer of a vertex of the n sided polygon it is acting on are exactly the elements
which fix it. This always contains the identity and the element that reflects everything about the line
through that vertex and the center of the polygon. Notice that the size of the orbit times the size of the
stabilizer equals the size of the group: This is an important general theorem which we will prove
shortly, but the idea is that the vertex has n places it can go to and exactly 2 ways to go to each vertex
so there are 2n total combinations.



Theorem (Orbit stabiliser theorem): For any group G acting on X, for an elementinx,
|Orbit(x)||Stab(x)|=|G|. Equivalently, the orbitis in bijection with the cosets of the stabilizer since this
by Lagrange’s theorem would imply |Orbit(x)||Stab(x)|=|G]|.

Proof:

Lets write S to mean Stab(x). Lets define ®: gS — gx. Our goal is to show that this is well defined and
that it is a bijection from the cosets of S to the orbit of x.

To check that this is well defined, we need to show thatif g;S = g,S then g,x = g,x. 1S = g,S
means that there is an s in S such that g; = g,s. But g;x = (g,5)x = g,(sx) = g,x by the definition of
S, so that proves @ is well defined.

Proof @ is surjective: For any gx in the orbit of x, we just need to take the coset constaining g.

Proof ® is injective: Suppose ®(g;S5) = ®(g,5). Lets = g;1g,, then sx = g;1g;x. But
®(g,S) = ®(g,5) so g1 x = g,x. Therefore sx = g5 1g,x = x, so by definition of S, sis in S. This means
that g,S = g,S asin they are the same coset. So this proves injectivity, so done.

Example: Consider the group G of symmetries (isometries) of a cube.

Let x be the center of a face. Then there are eight elements in Stab(x): This is because there are eight
symmetries of the face so this is exactly Dg.

The orbit of x has size 6 since x can go to any of the 6 faces.

So, by the orbit stabiliser theorem, G has size 48. The intuition is that x can go to any of the 6 faces and
then the faces can be rotated 4 times, by thinking like this the orbit stabiliser theorem becomes
intuitive. Even though we have not analyzed this group much at all, we can deduce its size.

Lecture 11:

Theorem (Cauchy’s Theorem): If G is a finite group and p is a prime that divides the order of G, then G
has an element of order p. This is a tricky proof because we consider some things where itis not
obvious why we are considering them.

Proof: Consider the set X of lists of length p of elements in G (p-tuples, not necessarily distinct)

{91, 92, 93, .- 9p} such that the product g, g, ... g, = e. Define the action of C, on the tuple such that
for t* in C, where t generates C,,and if x € X = {gy, 92, .. Gp}» t°X = {Gx41, Gxct2s +» Gp» G1» - G }- IS
easy to see that this satisfies the definition of an action. Lets check that itis indeed the case that
Jx+19x+2 - 9pG1 - Gx = €.Let a = gy ... gx, b = gx11,Gx+2, - Gp- Then ab=e implies ba=e since
inverses are two sided, so t*x is in x. Note that if we pick the elements in g in order there are |G| ways
to pick the first p-1 elements then the last one is constrained (it must be the inverse of the product of
the first p-1 elements of our set) to make the product be the identity, so there are |G|P~! lists in X.

One principle in maths is that counting something in two different ways always gives interesting
results. We know that the (), action partitions x into orbits, suppose there are k. We know by the orbit
stabilizer theorem that the size of any orbit has to divide the order of the group which is p, and thus
must be either 1 or p. Let | be the number of orbits of size 1. Lets order the x’s such that the size of the
orbit of some x is 1 exactly when x is in the first | elements of our order. So, since the orbits partition X,
|X| =1+ p(k — 1), as Xis partitioned into | orbits of size 1 and k-l orbits of size p. But |X| = |G|P~1, but
since p divides |G|, p must divide |X| and thus p divides L. If an orbit of a set x is of size 1, that means



shifting the elements in x does not change the contents of the set. Essentially we know that all of the
elements of x are the same if and only if the size of the orbit of xis 1. In particular, {e, e, €, ... e} is one
such list. Therefore >0, but p divides L so Lis not 1 so there is another tuple{g, g, g, ... g}. Thisimplies g
has an order which divides p, and thus has order p by definition. So done.

Definition: Let G be a group and g,h be elements. The element hgh™! is called the conjugate of g by h.
Notice that this is similar to diagonalizing matrices. This is essentially saying do h backwards, do g
then do h.

Example: If G is an abelian group, then forany g,hing, hgh™! = g since hg = gh. Therefore in an
abelian group, the whole conjugate idea is trivial.

Definition: All of the elements conjugate to g by some element is called the conjugacy class of g. This
is denoted ccl(g).

Note: G acts on itself by conjugation, ie h(g) = hgh™!. This is another way a group can act on itself. It
is easy to check that this is an action, and the conjugacy classes are exactly the orbits under this
action and therefore partition G.

Definition: The centraliser of g is the set of h in g such that {hgh™! = g}. This is the stabilizer of g
under the conjugation action. It is exactly the elements of h that commute with g since hgh™! = g if
and only if hg = gh. Itis a subgroup of G since it is a stabilizer of an action.

Definition: The center of G, denoted Z(G) is the elements h in G such that hg=gh for all gin G. This is
the intersection of all centralisers of the elements of G. Since we know that the intersection of
subgroups is a subgroup, the center of G is a subgroup of G.

Lecture 12:

The mobius group is a group of some bijections from C to C, with the subtle difference that we are
working in C plus an additional point which we call co. In this context we will consider dividing by zero
to give infinity.

Now lets put the unit sphere into 3D space (x, vy, z) with the x-y plane being the complex plane. What
you can see is that there is a bijection from points on this sphere to {C U o}, by drawing a straight line
from (0, 0, 1) (which we call the north pole) to the point on the sphere and seeing where it hits the
complex plane. The point (0, 0, 1) on the sphere is defined to map to the point at infinity, ie the oo
point. The intuition is that as we get close to the north pole, the corresponding point on the complex
plane gets “closer” to infinity, ie larger.

Definition: Let a, b, ¢, d be complex numbers such that ad-bc is not zero. Then we define a map f from
CUotoCU by f(z) = aztb

e Ifz = — %, we say that f maps to the point at infinity. The point at infinity

a . .. az+b a
maps to ;, Since as z gets large It Is easy to see that m goes to ;

. b
If c=0, then co maps to o and everything else maps to e

The set of such maps under composition is called the mobius group.

We need to check that this is actually a group. Function composition is associative,the identity is the
case c=0, d=1, a=1, b=0. By some easy but tedious algebra one can check that the composition of two



. . . . . dz—b . .
such functions is another such function. An inverse can be given by ﬁ and again this is easy but
tedious to check, and in checking this we will actually use the fact that ad-bc is not 0.

ay b1> (az b2> _ (alaz + byc, a;b, + bid,
We see that <c1 d,/\c, d,) \cia,+dyc, c¢1b, +d,d,

aia; +b1CZZ+a1b2+b1d2

) and that &2¥01 , 222tbs _

1Z+d1 C22+d2

, S0 composing these maps is like matrix multiplication.
C1a2+d1CZZ+C1b2+d1d2

These functions are called mobius transformations and we will investigate their fixed points, ie points
such that f(z)=z

Proposition: If a mobius transformation fixes 3 points, it must be the identity.

Proof: A fixed point satisfiesw = %. If one of the fixed points infinity, then this is only a fixed point if

c=0, so the equation becomes dw=aw+b. This meansw = ab%d, so there is only 1 (possibly infinite) root

unless a=d and b=0 in which case we have the identity. Otherwise, cw? + dw = aw + b, which only
has at most 2 roots unless d=a and c=b=0, in which case we again have the identity map. So done.

Note that in fact we always must fix at least one point: In the first case where infinity is fixed this is
trivial, and cw? + dw = aw + b always has a root unless d=a and c¢=0, in which case the fact that c=0
means infinity is a fixed point.

For a mobius map p, we define Fix(p)={the fixed points of p}. Example: If y(z)=2z, then Fix(p)={0,}.

Proposition (Triple Transitivity): For any triples of distinct points, there exists a unique mobius map
that moves them to any other triple of distinct points.

M One checks that this sends z; to 0,
(z—23)(22-21)

(z—w1) (W —w3) -1
EZw)WamW3) 4pen p-
@—wa)Wa—wy)’ o

This is unique as if there was transformations f and g that sent 3 points to the same 3 points, then

Proof: Lets write down a mobius transformation a :=

Z, to 1 and z3 to infinity. If we define b == o a sends z; to wy, z, to w,, Z3 to ws.

f o g~ 1 fixes those 3 points so it must be the identity by the previous proposition.

The mobius group M acting on C U oo is triply transitive, meaning that it sends any triple of 3 points to
any other triple of 3 points. It is sharply triply transitive because this happens in a unique way.

Definition: Let z4, z,, 23, z4 be in C U co. There is a unique ain M such that a(z;) = 0,a(z;) =1,

E72)@2723) o earlier,

a(z3) = oo. Then we define the cross ratio [z4, z5, 73, 24| = a(z,). Since a =
(z-23)(22—21)

(24—21)(22—23)

this means that |z, 25, Z3, Z4| = .
[ L2 3 4] (24—23)(22—21)

Lecture 13:

Proposition: The mobius transformations

zZ > az,z - z+ b,z - z~1 generate the mobius group.
Proof:

Let p be an arbitrary mobius transformation, and let z; = u(0),z, = u(1),z; = u(). Construct y,

such that u, (z3) = oo. Then either y, is the identity (if z; = o) or y; = —where z = z3. Let



z; = py(z1) and z; = u,(z,). Let u,(z) = z — z,'. Then note that u, (o) = o and pu,(z;") = 0. Let z; =
pz(11(22))- Leta = % and us(z) = az, then
2

U o pp o pui(z1) = 0,3 0 py o py(23) = 1, 1z © pp o piy(23) = .

Therefore, if we invert i3 o i, o 1, we get back i, and it must be exactly y by the three point lemma
from earlier, but we know that each of u4, u,, iz was a composition of stuff that we claimed was from
the generating set, and thus so is u. So done.

Definition: A circle in this context is either a normal circle or a line which includes the point at infinity.

Normal circles are defined by an equation |z — c¢| = r. Lines can be defined by |z — a| = |z — b| as this
equation describes the perpendicular bisector of AB.

Theorem: Under mobius transformations, circles get sent to circles. (Or, in the normal sense, lines or
circles are sent to either lines or circles).

Proof:

Recall that we have the generating set from before. Clearly, under scaling or rotation or shifting,

. . . 1 .
circles are preserved, so we just have to show that the transformation z — ~ preserves circles.

. . . 1
Lets say we have a circle |z — ¢| = r, then under this transformation, we have |; — c| = r.We can use

the equation for a circle which we derive in lecture 2 of Vectors and Matrices to get that

# - ; - g + |c|?> —r? = 0. Therefore (|c|?* — 1r?)|z|* — cz — ¢z + 1 = 0. If |c| = r, then this equation is
; 2
z £_+ L - |z — l| . Therefore, we have
c ¢ |c|? c

saying cz + ¢z = 1. Therefore we have that |z|? = |z|? —

|z| = |Z - E| which is the equation for a line. It makes sense - If you take a circle through the origin and

invert it, we stretch it out.

If |c| # 7, then the equation (|c|? — 12)|z|? — cz — ¢z + 1 = 0 becomes
|Z|2 _ cz _ cz 1 ¢ 2 _ |c|? _
(Icl2=r2)  (lc|2=r2) * (|c|?-7?) lcl2—r2zl "~ (lel2-r2)2  |c|2-r

this, by the vectors and matrices formula, and this is the equation for a circle. So done.

-is the same as

= 0. The equation |z

Corollary: Four points lie on a circle if and only if their cross ratio is either real or it is infinity.

Proof: Pick 3 points and let them define a circle and suppose we want to test if a fourth point lies on
that circle. Let a be the mobius transformation sending a(z;) = 0,a(z,) = 1, a(z;) = o (By a previous
proposition this exists and is unique), then a(z,) = [z, Z3, Z3, z4] (This is exactly the cross ratio as
defined last lecture). But then if z4, z,, Z3, z4 lie on a circle then since circles are preserved, it means
that a(z,) must be real or infinity since a(z,), a(z,), a(z3) lie on the real line with infinity, which we
defined to be a circle. Therefore the cross ratio is real or infinity. Conversely, if the cross ratio is real or
infinity, then a=1(0, 1, o, [z}, Z,, Z3, Z4]) = (21, Z3, Z3, Z4) and thus since 0, 1, o, [z, 2, 3, z4] lies on a
circle, so does z4, z,, Z3, Z4 by preservation of circles.

Lecture 14:
We will now start trying to find all the groups by order up to isomorphism.

There is only one group of order 1 and that is the trivial group.



Lets try to classify the groups of order 2. But remember all groups of prime order must be cyclic.
Therefore this gives that 2, 3, 5, 7, 11, ... has only one group up to isomorphism.

Now lets do order 4. We always have C, for the case where every element has order 4. So otherwise,
every element has to have order 2. We will do a new definition before we construct this group.

Definition (Direct product): If G, H are groups, their direct product (written GxH) is the group of
ordered pairs (g, h) with the operation defined in the obvious way (component-wise), and identity
(e, e). We can see that associativity is inherited and that the inverse has the inverses in each
coordinate.

The Klein-Four group is defined as K, := C, x C,. This is notisomorphic to C, since every non-identity
element has order 2. Before we prove that these are in fact all the groups of order 4, we will talk more
about direct products.

Theorem (Direct product theorem): If H;, H, are both subgroups of a group G, and H; N H, = {e}, and
everything in H; commutes with everythingin H, (ie h;h, = h,h;), and the set of elements H;H, is in
fact all of G, then G is isomorphic to H; x H,.

Proof: Notice how we will use all the hypotheses given in the theorem statement - If we don’t, then
something has either gone wrong, or the hypotheses are redundant. Here we assume hy, h, are in H;
and H, respectively. Lets define a map ¢: H; x H, - G such that (hy, h,) = h,h,. Thisis a
homomorphism because for any hy, hy, hy, h}, (hy, hy)(hy, h3) = (hihy, hyhy) = hyhihyhy = hyhyhi b
by the hypothesis that these things commute. Therefore we have a homomorphism.

Itis surjective by the assumption that the set of elements H; H, is all of G.

Itis injective because if h;h, = e, then h, = hi* whichisin H; and thus in H; N H, so it must be the
identity. Thus the kernel is trivial, so injective, so done.

Now suppose we have a group of order 4 with every element having order 2.
Remark: If H;, H, have trivial intersection, then we know that |H, ||H,| = |H,H,]|.
Proposition: If |G|=4, G is isomorphic to either C, or K,.

Proof: By Lagrange’s theorem, either there is an element of order 4 so we are looking at the cyclic
group. If not, every element except for the identity must have order 2. Let a, b be elements in G with
order 2. Let H, be generated by a and H, generated by b. Itis immediate from the previous remark that
H;H, isin G. But it has order 4 so it must be all of G. We know that if a group has all elements of order
2, all elements commute. You should try to prove this yourself before reading on —it’s not very difficult.

The proofisthatab = (ab)™! = b~Ya™! = ba, since everything is self-inverse. So from the direct
product theorem, we have K,.

Another application of DPT is to find when a product of Cyclic groups is Cyclic. If Ged(m,n)=1, then
Cm % C,, isisomorphism to Cy,,,.

Proof: Let C,, =< g >.LetH; =< g" >= C,,,, H, =< g™ >= C,. g¥isin H, if and only if n divides k

and g¥ is in H, if and only if m divides k. Since m and n are coprime, g¥ is in H; N H, if and only if mn
divides k, and thus the intersection is the trivial group. C,,, is abelian so that condition is immediate.
And we know that C,,, x C, gives the whole group since it has the right size. So done.



Now lets move onto order 6. We claim that Cg, D are the only ones. We note that Dy = S5 since Dy is
all the permutations of the vertices so it is essentially the same thing. By cauchy’s theorem, let G have
order 6, then there is an element s with order 2 and r with order 3. By Lagrange’s theorem, the biggest
non-trivial subgroup we can find has order 3. Such a subgroup can be the one generated by r. And then
we know that |G:<r>|=2 and s is not in <r>. Lets consider the cosets s<r> and <r>s. In both cases, we
know that since cosets partition the group and there are 2, they are both the complement of <r>.
Therefore, we know that G = {e,r,12%,s,s7,72} = {e,r, 72, s,75,1r%s}. We know that sr is living in the
complement of <r> and thus also in <r>s, so we have 3 cases: Either sr = s,sr = rs,sr = r?s. The first
one is nonsense since r is not the identity, the second one would mean we have (g by the direct
product theorem (immediately since s and r commute), and the third one would mean we have Dg.
This is the smallest non-abelian group.

Lecture 15:
Now order 7 is trivial due to being prime again so we will do order 8 now.

We know that C, x C, x C,, C, % C,, Cg, Dg are distinct groups of order 8. Is this all of them? The answer
turns out to be no.

We will now define the quaternion group Qg. This group consists of the following matrices:

+i O 0 =1 0 +i
2 _IZ’( 0 ii)’(n 0 )’(ii 0
any of our other order 8 groups, we will come back to this. People usually talk about this group in a

-I_(-)i J_Bi) = tk.

). One can check that this is indeed a group not isomorphic to

different way: We call I=1, -I=-1, (J—Bi -T(—)i) = +i, (¢01 J—Bl) = +j,(

By multiplying out these matrices, we can see that i? = j2 = k? = —1,(—1)i = —i etc,ij = k,

jk =i, ki = j. Notice the similarity to the cross product on the basis vectors. Also -1 commutes with
everything. This is called the Quaternion group. This is not abelian (ij does not equal ji) so if it is on our
list the only thing it could be isomorphic to is Dg. But Qg has 1 element of order 2 and Dg has 5, so the
quaternion group really is different. We will now prove that we have all the groups of order 8.

By Lagrange, every element has order 1, 2, 4 or 8. If there is an element of order 8 we have (g so we’re
done. There certainly are elements of order 2 by Cauchy’s theorem. We may not have an element of
order 4 though - It could be the case that every element except the identity has order 2. Such a group
must be abelian by the last lecture, so we can choose elements a, b, c where c is not ab and none are
the identity and none are equal to eachother, then consider the subgroups generated by these, and
use the direct product theorem twice to get that the group must be isomorphic to C, x C, x C,.

Therefore we may suppose that there is an element of order 4 which we will call a and that there is no
element of order 8. Lets consider some b not in <a>. Recall that since |G:<a>|=2, the left coset that is
not <a>is the same as the corresponding right coset, as we did last lecture. le, b<a>=<a>b. This
means that ba = a'b where i is either 0, 1, 2 or 3. i cannot be 0 since a is not the identity so we really
have 3 cases. If i=1, ba=ab so we can easily show that ba’ = a’b for any j so G is abelian. By the direct
product theorem on <b> and <a>we must have C, x C, if b has order 2. Otherwise, b has order 4. In
this case b? = a? since if b> = ba’ then b €< a >, and if b?> = a’ with j not 2 then b has the wrong
order. In this case, ab™! is an element of order 2, so by the direct product theorem on < ab™! >,

< a >,wehave (Cy x C,.



The next case is that ba = a?b. Rearranging we get bab~! = a?. But this is a problem - a? has order 2
but bab~! does not have order 2 since if ba’h~! = e then a? = beb™! = e, so we have a contradiction.

In the next case, ba = a™'b. If b has order 2, then in fact we must have Dg by a previous lemma.

Note that if b = ba’ for any j then b would be in the subgroup generated by a. This is not possible, so
b? €< a >.So we have 2 cases: either b?> = e, b?> = a?. There are no other cases or else b would have
to have order 8. We know we get Dy if b? = e, so this leaves the case where b? = a?. In this case,
o(a)=o(b)=4 and b? = a? and ba = a~1b. By setting i=a, j=b and k=ab, and —1 = a? = b?, we have the
Quaternion group. So we know all the groups of order up to 8. We have

-1
- G

- Dy
- Qs

Definition (Normal subgroup): A subgroup H of G is normalif foreveryh € H,g € G,ghg™! € H. We

write H < G, or H 2 G if we allow for H=G.

Remark
1. 1< GandG =2 G
2. IfGisabelianand H is a subgroup of Gthen H 2 G.
3. <r >< D,, because if we conjugate by, this is trivial, and (s7®)r?(sr*)™! = srPs = r~P
4. < s >isnotanormalsubgroup of D,, because rsr~! # s.

Proposition: Let ¢ be a homomorphism. Then if h is in the kernel of ¢ and gis in G, then ¢p(ghg™?!) =
d(@d(M)P(g™Y) = ¢p(g)P(g) 1 by definition of the kernel = e, so ghg ™1 is in the kernel. Therefore,
kernels are always normal subgroups.

Lecture 16:

In fact, we can think of a normal subgroup as a subgroup which happens to be a union of conjugacy
classes.

Lemma: Normal subgroups are exactly those where the left cosets are the same as the right cosets.
Proof: gH = Hg forallg & gHg™' = H for all g which is the definition of a normal subgroup. | just
multiplied both sides by g~ 1.

Theorem: If H is a normal subgroup of G then the set of cosets G/H is a group with operation
(9:H)(g2H) = (g192)H.



Proof: We need to check that this does not depend on our choice of g, and g, to make sure our
operation is well defined.

Suppose g1H = g,'H and g,H = g,’H.Then Hg, = Hg,'. Then there are hy, h, in H such that

g1 = g1hy and g; = h,g,’. Therefore g, g, = (g1h1)(h,95) = g1(hih;)g; = (g1)(g3)hs for some hs in
H. So we have the same coset.

Now, associativity is inherited. We have H as the identity coset. And we can check the subgroup
criterion: For some g,H, g,H, we have that g, g5 *H is in the group.

Definition: The quotient group G/H for a normal subgroup H is the group of cosets with respectto H
under the operation as defined above.

Example: The trivial group and the whole group are normal subgroups and they are the quotient
groups of eachother.

Example: Since Z under + is abelian, all its subgroups nZ are normal. So the quotient group Z/nZ is
the set of cosets, which is actually isomorphic to C,,. The coset 1+nZ generates this.

Example: Let G be a group and let |G:H|=2. Then H is a normal subgroup with the same proof as above
when we were classifying groups of order 6, since we have the gH=Hg criterion.

Note: Just because D,,, /C,, = C, this does not mean that C, x C,, = D,,. So these operations are not
inverses of eachother.

However, A= B x C = A/B = C.We will see a proof of this shortly. This is a consequence of the
(First) isomorphism theorem. Note (for vectors and matrices purposes) that if

B = (R%+),C = (R?,+),then B x C = (R**?, +), and that any a-dimensional plane is isomorphic by
rotation to R%.

Theorem (Isomorphism theorem): If ¢ is a homomorphism then G /ker (¢) = Im(¢).

Proof: Since the kernelis normal, the image is a subgroup. Let f: G /ker (¢) = Im(¢) with the rule that
we send the coset gker(¢) — ¢(g). We need to check that this is well defined, a homomorphism,
injective and surjective.

Well defined: Suppose gker(¢) = hker(¢). Then g = hk for some k in the kernel of ¢. f(gker(q,’))) =
¢(g) = p(hk) = p(h)p(k) = ¢ (h) since k isin the kernel and ¢ is a homomorphism. But we have to
check that f is also a homomorphism. The proofis: f((g ker(¢)) (hker(¢))) = f(ghker(¢)) =
¢(gh) = p(g)p(h) = f(gker(qb))f(hker(gl))). Proof that f is injective. Let x be in the kernel of f so
f(xker(¢)) = e.Then ¢(x) = e by definition of f so xis in the kernel of ¢p. Therefore x is part of the
trivial coset, ie the identity coset, ie xker(¢) = ker (¢). To prove surjectivity: For a typical element of

Im(), p(g) = f(gker(¢)), so done.

2mix

Example: Because f(x) = e = is ahomomorphism from Z — C,, with image C,, and kernel nZ, we get
Z/nZ = C, by the isomorphism theorem.

Similarly, let the complex unit circle be a group U under multiplication. Then the homomorphism from
R — U by f(x) = e*™* has image U and kernel Z, so R/Z = U.

Lecture 17:



Definition: A group G is simple if the only normal subgroups of G are 1 and itself. An observation is
every homomorphism from a simple group is either trivial or injective since the kernelis normal but
cnanot be anything other than 1 or G by simplicity.

Example: A cyclic group of prime order is simple. This is because there cannot be any subgroups other
than 1 and itself, so certainly not any normal subgroups.

Recently mathematicians have classified all finite simple groups but it is a massive piece of work that
takes tens of thousands of pages that people are still working on writing down properly. We will now
study permutations in more detail. Recall that a permutation of a set X is a bijection X to X and Sym(X)
is the group of such permutations under composition. Now we’re getting into the theory of Rubik’s
cubes.

Definition: Any ordered list of k distinct elements in our set X determines a k-cycle. We just write it as
a list like (a;a, ...ax). What this does is takes a; = a,,a, = as, ...a;, — a,. We can write a
permutation by tracing the cycle of 1 and then tracing the cycle of another element that was notin
that cycle until we are done and then expressing the permutation as a product of disjoint cycles. If
something is sent to itself, by convention we don’t write it.

Example: If 1,2, 3,4,5,6issentto6, 3,5,4,2,1wecanwriteitas (16) (2 35). We can multiply
cycles together and we need to start from the right.

Example of multiplying cycles: Lets do (1 2)(1 3 2). Multiplying cycles means to compose them. If they
are disjoint (ie consisting of different elements) there is not much we can do.

Lets start from the right and trace where 1 goes to. It goes to 3 (second cycle) and then to nothing (first
cycle). 3 goes to 2 (second cycle) which goes to 1 (first cycle). So we have a cycle (1 3). 2 should not
move because we have a bijection. We can verify this: 2 goes to 1 and back to 2 again. So we have the
product (1 2)(1 3 2)=(1 3).

Example: (14 3 2)(2 4 3)=(14 2 3) which we can check using the same procedure as above.

Remark: The cycle (a,as; ...aia,) is trivially equal to (a,a,asz ... a;). Butitis only in S3 that every
permutation is a cycle. In S,, we may have something like (1 2)(3 4). These are disjoint because they
share no elements. Note that disjoint cycles commute, and this is easy to see: The cycles are doing
things to different elements so the order in which we do stuff does not matter since there is no
interaction between the sets since they are disjoint. Eg, since (1 2) (3 4) is a product of disjoint cycles
itisequalto (34)(12). Theidea is we will write all finite groups as products of disjoint cycles.

Theorem: Every permutation of a finite set is a product of disjoint cycles.

Proof: We can do this constructively as above by picking an element and tracing where it goes and
picking an untouched element and tracing that until we are done.

Theorem: Every permutation of a finite set is a product of disjoint cycles in a unique way up to
reordering the cycles and using (a,as ...axa,) = (a,a,as ...ay), ie starting the cycle somewhere else.

Proof: This result is intuitive but we will prove this formally. Before the proof, we will do an example.
Lets try to multiply (1 2)(34)(56)(1 234 56). 1goes toitself, 2 goes to 4, 4 goes to 6, 6 goes to 2 and
we’re back. Now let’s try 3, it goes to itself and so does 5. So (1 2)(34)(56)(123456)=(246). Itis easy



to see that we’re not gonna have any different product of disjoint cycles since that would imply an
element is sent to a different element. Now we will actually prove uniqueness:

Let <f> be the subgroup of permutations in Sym(x) generated by a permutation f. We know from earlier
theory that the permutations in <f> acting on X partitions the set X into orbits. The orbit of an element i
inxis i,f(i),f(f(i)), .., f71(i). So these orbits really do decompose our permutation into disjoint
cycles in the way that we want. The only sense in which this was not unique was the choise of orbit
representatives (equivalent to shifting elements in a cycle) and the order in which we chose them
(equivalent to shifting the order of cycles), so we have uniqueness up to those choices, exactly as
required.

Definition (cycle type): The cycle type of a permutation is the unordered list of the size of the disjoint
cycles of that permutation. Eg, (1 6) (2 3 5) has cycle type {2, 3}. But we omit 1’s in the cycle types by
convention because they’re not very interesting.

Remark: The order of a permutation is the lowest common multiple of the numbers in the cycle type.
Definition: A 2-cycle is also called a transposition.
Theorem: The set of all transpositions generate the symmetry group on a finite set.

Proof: We can write it as a product of disjoint cycles. But, eg, (12 3 4) = (1 2)(2 3)(3 4) and similarly we
can decompose any cycle into transpositions.

Alternative proof (by induction): It is clearly true for n=2. The only transposition is (2 1) and that
generates S,.

For the inductive step, assume that S,,_; is generated by transpositions. Let 6 be any element of S,,. If
6(n)=n,thencisin S, _; soitis a product of transpositions. Otherwise, let Y be the transposition
(n6(n)). ButYs(n)=nso Ye is in the natural copy of S,,_; sittingin S,,. Therefore, Y& is a product of
transpositions. But then so is YY6 since we just multiplied by a transposition, but YY=e since Yis a
transposition, thus we have 6 as a product of transpositions. So done.

In fact, the generating set can be made by only swapping neihbouring things. This is called an adjacent
transposition. To see why, it is because, eg, (1 4)=(1 2)(2 3)(3 4)(2 3)(1 2)

Lecture 18:

We see from the method above that any transposition can be written as not only a product of adjacent
transpositions, but an odd number of them.

Theorem: Permutations have a well defined parity — We get there by either and odd or even number of
swaps and this cannot change. Equivalently we cannot get from the permutation back to itself in an
odd number of swaps.

Proof: See my vectors and matrices notes
Alternative proof:

We will show that we need an even number of adjacent transpositions to get to where we started,
since after that if we had an odd number of transpositions we could turn it into an odd number of
adjacent transpositions.



Apair{i, j}in{1, 2, 3, ...,n}is an inversion of a permutation if i<j but 6(i)> &(j).
Lemma: If 6 is a product of k transpositions, then k is the number of inversions of 6 mod 2.

Proof of lemma: (Induction on k) If k=1 and we have 1 transpositions we must have 1 inversion, if we
have 0 transpositions we have 0 inversions. So we have base cases. Now we need to do the induction
step.

Lets call 0 = T, 0’ where T; swaps lwith +1 and ¢’ is a product of k-1 transpositions. We want to show
that the number of inversions of o is one more or one less than the number of inversions of ¢’.
Anything not involving L or l+1 will not change. Consider the pairi, jsuchthate’(i) = L,o'(j) =1 + 1.
Then we have thata(i) =+ 1 > [ = a(j). Therefore the inversion status of the pair i,j will be
reversed. For any other pair, the order will not be affected when we change ¢’ to ¢ as we will change
between L and l+1 possibly but the other thing we change will stay more or less so we are done with
the lemma.

Therefore the number of inversions is like a “fingerprint” for how many swaps we have done. So this
proves the original statement. In particular, the identity has 0 inversions so we have to have done an
even number of transpositions or else we would have an odd number of inversions.

Now we know why if we swap two pieces on a standard rubiks cube we cannot solve it using legal
moves because all legal moves can be made from an even number of piece swaps (a rotation is the
same as a 4-cycle of corners and 4-cycle of edges).

Theorem (sign homomorphism): The map sign: S,, — C, defined by sending the number of swaps k to
(=1)* is a well defined homomorphism.

Proof: It is well defined by the previous theorem. So we just need to check that itis actually a
homomorphism. Note that ¢(o,0,) has k; + k, swaps from g;, g, respectively. Then

d(01) (o) = (D1 (=1)*2 = (-1)1**2 = ¢(g,03). So done.

Now we will define the alternating group as the kernel of this, ie the group of even permutations. We
denote A, for this, and this is a normal subgroup of S,, since it is a kernel and alternatively because it
is half the size.

Example: A; = {e, (1 2 3), (1 3 2)}, which is isomorphic to the rotations of a triangle. We get this by
considering how we are permuting the vertices, or from the fact that there is only one group of order 3.
Infact, A3 = C5.

Remark: The cycle type makes it easy to determine the sign of a permutation as we did with the
Rubik’s cube example above. A k-cycle (a;a, ...a;) can be written as (a;a;) (@ ax_1) ... (a;a3)(a,a,)
which has (k — 1) transpositions. So it is even if and only if k is odd. Therefore the product of two
4-cycles is the product of two odd things which is even, justifying the example above.

More generally, the cycle type (kq, k,, ..., k;) is even if and only if the number of even k’s (which
contribute an odd number of swaps) is even.

Example: (2,2) is an even cycle type, (2,2,2) is an odd cycle type. Adding odd numbers to the cycle type
changes nothing and each even number added or remove flips the sign of any permutation of the
cycle type.



Now we will study the conjugacy classes of S, and 4,,.

Proposition: The conjugacy classes of §,, are exactly the cycle types. Elements are conjugate if and
only if their cycle types are the same.

Idea: If we move stuff around, then do some cycles, then move the stuff back, we still did the same
cycles to stuff, just moved around.

Proof: Let gy = (af ...aj,) ... (a¥ ...af,) and let g, have the same cycle type, so

0, = (b1 ...bl) ... (bf ... bf) (both allowed as we can write permutations as products of disjoint
cycles). If we include 1-cycles, then the things a{ are exactly all the elements 1 to n. We can now
define a permutation T that sends a{ to bl] Now we want to consider Ta; T ~*: This sends bij to a{ then

then to b’

i+1moa 1> SO itdoes the same thing to each element as d,, so 0; and o are

J
to Ai+1moa l;

indeed conjugate, as required, and thus in the same conjugacy class.

We need to show that if we have two conjugate permutations then they have to have the same cycle
type. Because we’re out of time, we will do this part next lecture.

Lecture 19:

Finishing the proof that conjugate permutations are exactly those that have the same cycle type:
Suppose o = To; T, The above argument shows that if o; = (a7 ... a},) ... (af ...af,) then we saw
that if we write b} = T(a}) then o, = (b} ...b.) ... (b¥ ... b)) and thus will have the same cycle type.

This works for any T because we can pick any b’s depending on where T sends the a’s even if Tis
chosen arbitrarily. This seems abstract but as last lecture there is an intuition for this.

We can now count conjugacy classes in S,, and A,,. Lets start with S5. Its only possible cycle types are
(3) which has 2 elements and (2) which has the 3 “reflection” elements and e, since those are the only
ways to partition 3 into cycle “classes” up to ordering. Therefore those are the three conjugacy
classes.

S, has conjugacy classes (4), (3), (2,2), (2), e.

Example: The number of (2,2) cycles in S, is 3 because the only possibilities are (1 4)(2 3), (1 3)(2 4)
and (1 2)(3 4).

Recall that if a group acts under conjugation, then the orbit stabiliser theorem implies that the size of
the centraliser of an element equals the size of the group divided by the size of the orbit which is the
size of the conjugacy class.

Therefore, we can find all the centralisers, and we know (in fact we know this for general finite groups)
that the size of a conjugacy class divides the order of the group.

Example: The centraliser of (1 2)(3 4) has size 8 because it has to be 24 divided by 3 as 3 is the size of
the conjugacy class.

Indeed, if we try to make a list of elements that commute with (1 2)(3 4) we will know we are done
when we have 8. We can write down {e, (1 2)(34), (12),(34),(13)(24),(14)(23),(1423),(1324)}
which we can verify manually in theory.

We can now make a table:



Cycle typein S, Size of conjugacy class Size of centraliser
e 1 24

(2) 6 4

(3) 8 3

(4) 6 4

(2,2) 3 8

Example: To find how many 3-cycles there are, we see that we can choose any 3 things to be cycled

;L) = 8. We can do a similar method for all of them. And

we see that the size of the conjugacy classes add up to the size of the group which is 24, which

and then have 2 possible orders, so we get 2 (

suggests we have done this correctly.
Lets now look at alternating groups:
Lemma: Lety € 4,

i) If some odd element of S;,, commutes with y then the conjugacy class in 4,, of y is equal to
the conjugacy classin S, of y

i) If every elementin S,, that commutes with y is even, then the conjugacy class splits into 2.
We will find that ccls (y) = ccly, (¥) U ccly, (tyt™") where tis any transposition.

Proof:
1Sy = |CClsn(V)||Csn()/)|

|An| = |CClAn(V)||CAn(V)|
By the orbit stabiliser theorem.

[Ca,, )]

ICs,, ()] |ecla, )

We can rearrange (using |S,| = 2|4,]) to get |ccls, (¥)| = 2

Now Cy, (v) is exactly the even things that commute with y. This is equal to the kernel of (g (y) under
the sign permutation. The image has size 1 or 2, so by the isomorphism theorem the index
|Cs, (¥): C4, (¥)| is either 1 or 2.

If there is an odd element of S, in Cg () then that s exactly saying that C, _(y) # Cs,_ (¥). Therefore

this corresponds to the case where the index |Cs_(¥): G4, (v)] is 2, then |ccl5n(y)| = |cclAn(y)| by the
equation we got from orbit-stabiliser, which corresponds to case (i) of the lemma.

Otherwise, the index is 1, which will imply |C5n(y)| = |CAn(y)| and |ccl5n(y)| = 2|cclAn(y)|. Now pick
an element s in |cclg, (¥)| notin |ccly, (¥)], then we know that |ccl,, (0)| = |ccly, (¥)| s the only
possibility so it indeed splits into 2.

Now let t be a transposition, then consider tyt~!. If this is in CClAn(G), thenthereis an a in A, with
aca~! = tyt™1, but then the problem is that t 'a = ta (since t is a transposition) commutes with y
and is odd, contradicting the assumption in the lemma.

Example: We want to decide ifin A, the conjugacy classes e, (2,2) and (3) break into 2.

(3) must break into 2 since otherwise the centraliser would have size 1.5. e cannot break into 2
because it has sice 1. There are 3 (2,2) cycles which cannot evenly split into 2. Representatives for the
two new conjugacy classes of (3) are (1, 2, 3) and (3, 2, 1).



Lecture 20:

Lets now look at conjugacy in Ss and As. In S5 we can count the cycle types, if we do it carefully we see

that all of them are:

e, (2), (3), (4), (5), (2,2), (2,3).

forced to swap other 2)

Cycle type Size of ccl Size of centraliser
e 1 120
2 5\_ 12
(2)-10
3 2 (§)=2o 6
4 5\_ 4
6+ ( 4)—30
5 24 5
2,2 1(5)(3)\_ , 8
> (2) (2)—1 5, half so we don’t
double count swaps in the
other order
2,3 20 (same as 3-cycles then 6

As a sanity check we see that the sizes of the conjugacy classes indeed add up to 120.

In Ag, only e, (3), (5), and (2,2) remain, and we need to decide which conjugacy classes splitinto 2. e
and (2,2) do not since they have an odd number of elements, (5) does because its centraliser would

have 2.5 elements otherwise. So only (3) needs more careful analysis. Remember that a ccl will split

exactly if we can find an odd thing that commutes with it. (4 5) commutes with (1 2 3) so the conjugacy

class of (1 2 3) does not split. Now we can make a table of conjugacy classes in 4s.

Cycle type Size of ccl Size of centraliser
e 1 60

3 20 3

5 12 (2 conjugacy classes) 5

2,2 15 4

The numbers 1, 20, 12, 12, 15 do add up to 60 which is reassuring.

Theorem: As is simple (it has no non-trivial normal subgroups).

Proof: Suppose N is a normal subgroup of As. Then the order of N divides 60. But N has to be a union

of conjugacy classes (fornin N, gng™! € N so ccl(n) is a subset of n). N also contains e. So here are

the possible sizes of unions of conjugacy classes in 4s.

Possibilties:

- 1+412=13

- 1+12+15=28

- 1+12+20=33

- 1+12+15+20=48
- 1+12+412=25

- 1+12+12+15=40
- 1+12+12+20=45
- 1+15=16




- 1+20=21
- 1+15+20=36

Those are all the possible sizes of non-trivial normal subgroups. None divide 60, so by Lagrange’s
theorem we are done.

Now we will study matrix groups.

{M, (R)} is the set of n*n matrices in the real numbers. This forms a group under addition, and under
multiplication it is almost a group if we exclude matrices with determinant 0 to ensure existence of
inverses of everything, since associativity is a known property of matrix multiplication. We write
GL,(R) to mean the group of n*n invertible real matrices under multiplication.

Determinant is a homomorphism from this group to the non-zero reals under multiplication as seen
as an example when we defined homomorphisms. We can get a kernel of this to make a subgroup: We
can write SL,, (R) to mean the group of matrices with determinant 1 and real entries under
multiplication. By the isomorphism theorem the quotient of this isomorphic to the non-zero real
numbers under multiplication.

Everything here can be done with R replaced with C.

See vectors and matrices to see what it means for matrices to be similar. But notice that this exactly
means that they are conjugate! This conjugation action is basically change of basis.

Proposition: Let V be an n-dimensional real vector space (See vectors and matrices to see what this
means) and a be a linear map Vto V. If Ais an n*n matrix that represents a in some basis, then the
orbit of Ain GL,,(R) under conjugation, ie the set PAP~! is exactly all the matrices that represent a.
This is because the set of invertible matrices P is exactly the set of linearly independent bases we can
represent a under, if this makes sense.

Coordinate-independent alternative proof of proposition: A basis defined an isomorphism of n-
dimensional vector spaces V from R" to V defined in the obvious way (component-wise).

When we say “A represents a”, we mean that the isomorphisms in the right arrows are the same in this
diagram below. We will finish this proof next lecture.

¥
e
A “
fFL? -%ii-a V

Lecture 21:



Now we write a = ¢pA¢p 1. Another basis corresponds to a differentisomorphism 1: R® - V, whose
basis vectors depends on where (0,0,...,1,...,0,0).

The transformation B = Y~ tay = Y 1pA¢p 1y = PAP L where P = )~ 1¢p, where " 1¢is a linear
map P to P that is represented by P in the standard basis. Thus the orbit consists exactly of matrices
representing a in the different possible bases. P is invertible as it is a bijectionVto V, its inverse is
¢~y which we know is also a bijection.

We noticed that multiplication in the mobius group was like 2*2 matrix multiplication. We can now
say, precisely, that GL,(C) is almost isomorphic to the mobius group with the obvious isomorphism.

A0

0 /1), and the latter is

Proposition: The mobius is the isomorphic to the quotient group GL,(C)/ (

actually a normal subgroup.

Ccl Z) - az: which is a homomorphism which we showed when we were

looking at matrix multiplication. This is surjective and the kernel is when this is the identity, which is

Proof: Lets define a map (

exactly when a=d and b=c=0 (as it is exactly when we fix 0, 1 and infinity), so the isomorphism
theorem applies and we get the proposition.

We define an orthogonal matrices to be matrices that preserve lengths of vectors under linear maps.
Proof this is equivalent to other definitions:

For vectors u,v we nave by simple algebra that 2(u.v) = |u|? + |v|? — |u — v|?, soif lengths are
preserved then we can substitute u for Au and v for Av into this equation and therefore dot products
are preserved as well (RHS (right hand side) will be the same by length preservation so so is LHS).
Conversely if we always have that Ax.Ay=x.y, then Ax.Ax=x.x, therefore the length of Ax equals the
length of x.

Proposition: This defintion is equivalent to the defintion that the columns form an orthonormal basis.
This part will assume knowledge of what §;; means and what a basis is — see vectors and matrices.

Proof: Consider the standard {e;} basis. Then §;; = e;.e; = Ae;. Ae; so the columns are orthonormal.
Because of this, we know that columns orthonormalin A implies AT A = I. But then if we assume this,
we easily see that (Ax.Ay) = xTATAy = xTy = x.y, so dot products are preserved, so this is the
converse and we have the equivalence.

Now we can see that orthogonal matrices form a group — products and inverses preserve distance and
satisfy ATA = I. Their determinant is always 1 or -1 since they are invertible (As Det(4) = Det(AT) so
Det(4)? = 1).

Lecture 22:

The special orthogonal group SO(n) is the group under multiplication of the orthogonal n*n matrices
with determinant 1. Since the determinant of an orthogonal matrixis 1 or -1, this is essentially the
kernel of the determinant homomorphism as a map from the orthogonal group to the determinant.
This is a subgroup of the orthogonal group with index 2 (as there are orthogonal transformations with
determinant -1, just take the identity and convert one of the 1’sto a -1).

Note that any vector vin R3 defines a plane perpendicular to it. We can note from Vectors and
Matrices when we gave this general formula for reflections about spaces that the matrix reflecting



about the normalized vector v (ie rotating 180 degrees around it) is given by I — 2vvT, then we see
geometrically that if we take minus this we will end up with a reflection about the plane. Therefore we
can write 2vvT — [ as a reflection about the plane, provided v is normalized.

As a sanity check lets see algebraically why the reflection about the plane perpendicular to a unit
vectorv 2vvT — [ actually preserves lengths, in order to complement the idea that we know it
geometrically.

QuvT = Dx =2vvTx —Ix = 2v(v.x) — x . [2v(v.x) — x|? = Qv(v.x) — x). Qu(v.x) —x ) =

4. v(v.x)% — 4(v.x)? + (x.x) = (x.x) = |x|? because vv=1, so yes it preserves lengths.

Note that in the basis with v included and everything else perpendicular, our matrix will be
represented by a diagonal matrix with 1 in all but 1 entry with -1, so the determinant of any reflection is
-1.

Theorem: Every matrix in O(n), ie the group of n*n orthogonal matrices, is a product of at most n
reflections.

Proof: Induction on n. This is not hard to see for n=1 where the only orthogonal matrices are (1) and
(-1) which are products of 0 and 1 reflections respectively.

Induction step: Fix A € O(n). Consider the standard basis for R". Let v = e,, — Ae,,. Then a reflection
about the plane perpendicular to v will move e, to Ae,,, as we have defined v to be this way. If we start
in the A-transformed world and then apply this, everything else will be perpendicular to e, since this is
all orthogonal transformations. Therefore all the first n-1 transformed basis vectors will be in the
natural copy of R"* 1, which we can move back to their original positions with n-1 reflections by our
induction hypothesis. Therefore we go from the transformed-world to the nothing-world in n
reflections which we can just reverse. So done.

We can use this theorem when n=2. Since reflections have determinant -1, everything in the special
orthogonal group is a product of either 0 or 2 reflections since they have determinant 1.

Lemma: If Ais in SO(2) then itis a rotation about the origin. Otherwise it is a reflection

Proof: If it is a product of O reflections it is the identity. If it is not in SO(2) then the number of
reflections has to be 1 so we do have a reflectoin. If itis a product of 2 reflections we can write

A = 5,5, where S means reflect about this line. §;,S,x = x means S;,x = S, x since reflections are self
inverse. Butvis parallel to x — S,x and similarly for u, so they are parallel if this happens, which would
mean we have the identity. Therefore any non-identity thing in SO(2) is a distance preserving
transformation that only fixes the origin. The columns being orthonormal and the determinant being 1

implies the matrix can be written as ( a Z) with a? + b? = 1 sowe canwrite aand b as

—b
sin(8), cos(@) for some 6.

Lemma: Anything but the identity in SO(3) is a product of 2 reflections and is either the identity or a
rotation about a line.

Proof: Anything in SO(3) has to be the product of an even number of reflections, which means if itis
not the identity it is a product of 2 reflections. For non parallel u and v the planes perpendicular to u
and v through the origin intersect in a line. Therefore this line is fixed by the reflections. By considering



what happens to two vectors perpendicular to those lines we see that those must rotate as they stay
perpendicular to this line.

Lecture 23:

Now we will talk about platonic solids. While there are infinitely many regular 2 dimensional polygons
(triangles, squares, pentagons, hexagons, etc)

Definition: A convex polyhedron X € R3 is a platonic solid if every face is a regular polygon of the same
type, and the isomstries act transitively on all the faces, and if x is the midpoint of a face then the
stabilizer of x under the isometries is isomorphic to the symmetries of the face.

There are five platonic solids: The tetrahedron (4 triagnular faces), the octahedron (8 triangular faces),
the icosahedron (20 triangular faces), the cube (6 square faces) and the dodecahedron (12
pentagonal faces). You can prove this by going through the possibilities types of polygons and how
many can meet at each vertex.

Image of the platonic solids.

We have five groups to identify for symmetries of these, but it actually turns out that there are only
three distinct groups up to isomorphism.

Two solids X and Y are dual if Y can be constructed from X by putting vertices in the center of each
face and then joining vertices in adjacent faccts by edges. I'll show what this means using the diagram
below that shows that the cube and octahedron are dual.

We can see geometrically that if we try to find the dual of the octahedron we will just get a smaller
version of the cube. It turns out that the dodecahedron and icosohedron are dual as well, and the dual
of a tetrahedron is itself.

Dual things have isomorphic symmetry groups: We can see that any isometry of a cube is an isometry
of the octahedron (from the diagram above) and vice versa, and since we have this double inclusion (X
contained in Y and Y contained in X) of these finite groups it means they are the same.



Note that the group of isometries of the tetrahedron is isomorphic to S, as it is exactly the
permutations of the 4 vertices. We can do any swap of 2 vertices by a reflection and thus we generate
all of S,. Formally, there are 4 faces and each one has 6 symmetries so by orbit-stabiliser the size of G
is 24. Now let G act on the vertices, then this defines a homomorphsim G — S, which is surjective
(because we can get any permutation as mentioned above), and injective as the homomorphism only
goes to the identity if all 4 vertices are fixed, and this is obviously the identity so the kernelis trivial, so
we indeed have a bijection and thus an isomorphism.

We want to identify group of rotational symmetries of the tetrahedronis G N SO(3)
Lemma: If H is a subgroup of S;, and H has index2then H = A,,.

Proof: Subgroups of index 2 are always normal. We also have a homomorphism from S,, - €, = £1
with kernel H. If this homomorphism sent all transpotisions to 1 then since transpositions generate all
of §,, then the kernel would be the whole of S,,. So there is a transposition T that is sent to -1. But then
all transpositions are conjugate to this, and thus are sentto -1 as $(ABA™1) = ¢(B) because the
range of our homomorphism is an abelian groups so we can expand it using the definition of a
homomorphism and cancel the conjugate things. So we are sent to 1 if and only if we have an even
number of transpositions. So H = 4,,.

By this lemma, the group of rotations of a tetrahedron is A,. The rotation group has index 2 because it
is the kernel of the determinant homomorphism which has image C,.

The cube has the same symmetry group G as the octahedron. Now by orbit-stabiliser G has size 48 (in
fact we did this example ages ago when we introduced orbit-stabiliser). The group of rotations
Htherefore has size 24. G actually acts on the set of the four long diagonals of the cube. We want to
show that ¢: H — S, is surjective because then it will have to be injective as the sets have the same
size. Since transpositions generate we just want to show that each one is in the image of ¢p. Now
rotate half a rotation about the axis through an edge and an opposite edge, this transposes two long
diagonals. There are six such axes we can rotate about to swap a different set of long diagonals, but
there are only six possible swaps of long diagonals so we achieve all six of them. We are missing the
symmetry -, but if we add this in it commutes with everything in S,, so by the direct product theorem
our group is isomorphic to S, x C,.

Lecture 24:
Now lets identify the symmetry group of the dodecahedron and therefore also the icosahedron.

Let G be the isometry group of a dodecahedron acting on the faces. The orbit has size 12 and the
stabiliser is isomorphic to D, so it has size 10 so by orbit stabiliser we are looking at a group of order
120.

Now what we will do is a kind of genius thing. If we draw diagonals on the faces, they inscribe 5 cubes
in the dodecahedron. | will just show a picture of this. There are a total of 60 diagonals on the faces
and 12 edges per cube so there are 5 cubes total. Image below:



Image: Cube in a dodecahedron

The isometry group of the dodecahedron will act on the set of these cubes. We now have a
homomorphism to S5 and we want to look at what the image is.

Now if we rotate about a long diagonal we get a subgroup of order 3 since we have 3 faces meeting at
that vertex. This permutes 3 of the cubes and fixes the 2 through that vertex. Therefore we have all 10

3-cycles inthe image by each of the 10 long diagonals, and their inverses, so we have all 20 3-cycles
in 55.

Claim: The set of 3-cycles generate As

Proof: We know that the subgroup generated by the 3-cycles is the whole of Ac:eg (123)(134) =
(14)(23),and (123)(345) =(12345), and similarly we can get all 2-2 and 5-cycles. Because of
this, we know that the rotation group of the dodecahedron is isomorphic to A5. But now, by the same
reason as the cube, the symmetries of a dodecahedron is isomorphic to the group A5 x C,.



