
Lecture 1: 

We will talk about symmetry and use that to motivate the definition of a group. Here are the 
symmetries of a triangle. 

 This image shows the symmetries of 
a triangle. 

Notice some key properties: 

- If I do one symmetry and then another symmetry, I get a symmetry. 
- The do nothing symmetry exists, and we call it the identity. 
- I can do symmetries in reverse. For example, I can pick up a triangle, move it around and that is 

a symmetry, and then reversing that movement is also a symmetry, as expected. 

This motivates the definition of a group. Infinite groups but we can think of finite groups as a set of 
symmetries. A group is a set, with a binary operation which I will call *, which satisfies the following 
properties. Note that a binary operation is an operation that takes 2 things and outputs a third thing. 
For example, multiplication in the real numbers is a binary operation, because I can do                         
(one number)*(another number)=(a third number). 

A group is a set with a binary operation such that: 

- For any a, b in the group, a*b is in the group. 
- There is a(n) (right) identity element, ie an element e such that a*e=a for any a in the group. We 

usually write e to mean identity. 
- All elements in the group have (right) inverses, ie for any a in the group there is an element b 

such that a*b=e 

We can think of * as composing symmetries (doing one after the other). However, there is another rule 
for a group which is associativity, ie that (a*b)*c always equals a*(b*c). This is obvious in the case of 
symmetries: If I do symmetry 1 then do symmetry 2 followed by symmetry 3, vs if I do symmetry 1 
followed by symmetry 2 then do symmetry 3, I will end up with the same result. This means we can 
move brackets around when doing algebra with groups, which is nice. Groups can be thought of 
algebraically or in terms of symmetries, and generally we do it algebraicly for infinite groups and as 
symmetries for finite groups. 



However, groups are NOT commutitive in general. We cannot say that a*b always is equal to b*a. For 
example, one can check that doing one of the reflections followed by a rotation yields a different 
ending state than doing the rotation first then the reflection in the triangle case. A commutative group 
is called an abelian group. 

We would like to show that identity elements of groups work both ways, ie that e*a=a for any a, and 
the same for inverses, ie that if a*b=e then b*a=e as well. We also would like to show that the identity 
element is unique, so that we can justify saying “the identity element”, and also that inverses are 
unique. We have to be very careful, as if we define that the identity is such that e*a=a for any a but the 
inverse of a is the element such that a*b=e, then this is a left identity and a right inverse, and this 
allows for some sets that do not fit the standard definition of groups. For example, if we define a group 
{a,b} with the binary operation defined by a*b=b (ie always pick the element on the right), then this is 
associative, a is a left identity, a and b have a right inverse in the form of a, but it does not satisfy the 
standard definition of a group as it is not the case that we have a right identity or a left inverse. 

A group can be defined by having a right identity and right inverse (as we did above), or a left identity 
and a left inverse (just put the elements in reverse order in the proofs we will do that they are both in 
fact two sided), or can require them in the first place to be two sided. 

Also, we often don’t explicitly write * down, as it is implied, as we will do now in the proof. 

Theorem 1: If ab=e then ba=e 

Proof: 

b=be (by identity) = bab (since we assume ab=e). There exists an element c in the group with bc=e. 
Multiplying c on both sides of b=bab gives bc=babc, but bc=e so we have that e=bae, but since 
anything*e=anything, we have that ba=e. 

Theorem 2: ea=a for any a. 

Proof: 

ab=e for some b in the group, But then ba=e by theorem 1, so ab=e=ba, so ea=aba=ae=a, so ea=a. 

Theorem 3: Inverses are unique, ie if ab=e=ab’, then b=b’. 

Proof: 

b=be=bab’=eb’ (since ab=e so ba=e by theorem 1) =b’ (by theorem 2). 

Theorem 4: Identites are unique, ie if ae=ae’=a, then e=e’. 

Proof: 

a has an inverse, lets call that b, thn e=ba=b(ae’)=(ba)e’ by associativity=ee’=e’ because e is an 
identity, therefore e=e’. 

Going forward, we will use these theorems all the time and not necessarily mention it. 

We typically write the inverse of 𝑎 as 𝑎−1, and we write groups as (The set, the operation) or (the set, 
the operation, the identity). For example, the integers form a group under addition with identity 0, and 
we can write it as (ℤ, +) or (ℤ, +, 0). 

Lecture 2: 



The inverse of an inverse is the original element. This is because 𝑎 is an element such that 𝑎−1𝑎 = 𝑒. 

We define 𝑎𝑛 = 𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎 with n a’s, and 𝑎−𝑛 = 𝑎−1 ∗ 𝑎−1 ∗ 𝑎−1 ∗ … ∗ 𝑎−1. We can easily show 
that this satisfies the obvious properties, ie 

𝑎𝑛+𝑚 = 𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎 with n+m a’s = (𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎)[𝑛 𝑎′𝑠] ∗ (𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎)[𝑚 𝑎′𝑠] = 𝑎𝑛𝑎𝑚. 

If m is negative and n-m is positive, then 

𝑎𝑛−𝑚 = 𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎 with n-m a’s = (𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎)[𝑛 𝑎′𝑠] ∗ (𝑎−1 ∗ 𝑎−1 ∗ 𝑎−1 … ∗ 𝑎−1)[𝑚 𝑡𝑒𝑟𝑚𝑠] =

𝑎𝑛𝑎−𝑚, since all the inverse terms cancel with a non-inverse term. If n-m were negative, or we had -n-
m, we could just invert everything and be fine. 

𝑎𝑛𝑚 = 𝑎 ∗ 𝑎 ∗ 𝑎 … ∗ 𝑎[𝑛𝑚 𝑎′𝑠] which can be split into n sets of m a’s meaning we get that this is equal 
to (𝑎𝑚)𝑛. If n or m were negative, then we could just either flip the sign on n and invert both 𝑎𝑛𝑚 and 
(𝑎𝑚)𝑛, or flip the sign on m and invert both 𝑎𝑛𝑚 and (𝑎𝑚)𝑛 since inverting each 𝑎𝑚 term is the same 
as inverting the whole thing. If n and m are both negative, we have that 𝑎𝑛𝑚 = (𝑎−𝑚)−𝑛 as flipping the 
sign of n and m on the right hand side is the same as inverting it twice which makes you go back to 
where you started. 

Of course, 𝑎0 is defined to be the identity element, as 𝑎0 = 𝑎1−1 = 𝑎𝑎−1 = 𝑒 so everything can 
actually work out. 

Some examples of groups and non-groups: 

The group that is literally just {e} is called the trivial group. 

The set {ℤ, +, 0} is a group as addition is associative, integers are closed under addition, and -x is an 
inverse for any x. Also {ℚ, +, 0}, {ℝ, +, 0}, {ℂ, +, 0} are all groups. These are examples of infinite groups. 

The set {ℕ, +, 0} is not a group due to the lack of inverses. 

{ℤ, *, 1} is not a group for the same reason. However {ℚ, *, 1} is almost a group except for the fact that 0 
has no inverse. However {ℚ\{0}, *, 1} is a group. 

We already encountered the group of symmetries of a triangle. This group is called 𝑆3 or 𝐷6, it will be 
later that we get more intuition for why. 

𝐶𝑛 = {𝑧 ∈ ℂ: 𝑧𝑛 = 1,∗, 1} is a group under multiplication. It is turns out that it is isomorphic (meaning 
it’s structurally the same, we will see what this precisely means later) to the group                                         

{0, 1, 2, 3, … n-1, +(mod n), 0}, where 𝑒
2𝑖𝑘𝜋

𝑛  in the first group corresponds to k in the second group. 

Definition: Order 

The order of a group G is the number of elements in G. This is denoted o(G) or |G| or #G. 

Lecture 3: 

First, we need a definition, which we probably also come across in the numbers and sets course. A 
bijection is a function such that every output is mapped to exactly once, so essentially a one-to-one 
correspondence. And a permutation is a bijection from a set to itself, which is essentially just a re-
ordering of the elements of the set. 



For a set x, Sym(x) is notation for the set of permutations of x. It turns out that under composition, ie 
doing one permutation after the other, this forms a group. We can prove this by checking each of the 
axioms. 

This image shows algebraic working that 
is handwritten to prove that the symmetric group is a group. 

𝑆𝑛 is notation for the group of permutations of any set with n elements, such as {1, 2, 3, … ,n} under 
composition. These groups are called symmetric groups. 

Example: 𝑆3 is the same as the group of symmetries of a triangle as you can think of it as rearranging 
the vertices, but 𝑆4 is not the same as the group of symmetries of a square because if you swap two 
adjacent vertices you do not end up with a symmetry of a square that you can get by keeping it rigid 
and moving it around in space. However, the group of symmetries of a square is a subgroup of 𝑆4, 
which foreshadows the next definition. 𝑆52 is the group of shufflings of decks of cards. 

It turns out that the order of 𝑆𝑛 is n!. To see why, a hint is: Think about how many places there are to 
map the first element to, then how many places are left to be able to map the second element to, and 
so on. 

Note: From now on we won’t always specify the operation of a group when we talk about a group, 
provided it is implied. 

Definition: A subgroup is what you would expect it to be – a subset of a group that is itself a group 
under the same operation. For example, the group of rotations only of a triangle is a subgroup of the 
group of symmetries of a triangle, and the group of symmetries of a square is a subgroup of 𝑆4. To 
check that a subset is a subgroup, you must check the axioms, ie that 

- The identity is in the subgroup 



- All elements in the subgroup have their inverse in the subgroup 
- For all a, b in the subgroup, a.b is in the subgroup. 

Note that associativity is trivially inherited. 

Example: The trivial group is a subgroup of every group, and every group is a subgroup of itself. Any 
other subgroup is called a proper subgroup 

Notation: We write H≤G if H and G are groups with H a subgroup of G. We often do use a capital H to 
refer to subgroups. 

Example: Under addition, ℤ≤ℚ≤ℝ≤ℂ. 

Example: For n a non-negative integer Define nℤ as the set of all multiples of n in ℤ, for example 
3ℤ={…, -9, -6, -3, 0, 3, 6, 9,…} 

nℤ is indeed a group under addition because 

- Identity (0) 
- Closure (Any 2 elements in nℤ is of the form an and bn with a, b integers, and an+bn=(a+b)n 

with a+b an integer, which is in nℤ. 
- Inverses (For any x in nℤ -x is in nz. This is because an and (-a)n are both in nℤ for all integers a) 
- Associativity (Addition is associative) 

Theorem: All subgroups of ℤ are of the form nℤ with n a non-negative integer. 

Proof: Let H be a subgroup of ℤ. The case where H is the trivial group is just H={0} which is 0ℤ. 
Otherwise, there exists a non-zero element. If it is negative, then its inverse must be positive, meaning 
there is always a positive element. There is also a least positive element, and the justification for this 
is that if there were not a least positive element then there would be an infinitely decreasing chain of 
positive elements, which is not possible since they are integers so the length of such the chain cannot 
be longer than the first element in the chain. We have learned in numbers and sets that we have to be 
careful about assuming that something like a “least positive element” exists. However, it does. 

Let the least positive element of H be n. Then 2n, 3n, 4n, … are in H by closure, then so are -n, -2n, -3n, 
… by inverses, and so is 0 by identity. If this is all of H, then we have nℤ so we are done, but we will 
prove that in fact, we must have nℤ. 

Suppose there exists an element x in H with x not a multiple of n. Then by the division algorithm, we 
can write x=kn+r with k an integer and 0<r<n (strict inequalities since otherwise x would be a multiple 
of n). But then since x is in H, x-kn is in H by closure, and x-kn=r so r is also in H, but n is the least 
positive element in H by assumption, but r is positive and less than n, so this is a contradiction. So 
done. 

Theorem (Not mentioned in the lecture but I’ve seen it mentioned in IA groups notes before and it is 
very useful): if H is a subset of G and the identity is in H and for all a, b in H, 𝑎𝑏−1 is in H, then H is a 
subgroup of G. 

Proof: Identity and associativity are immediate. Inverses because if a in H then 𝑒𝑎−1 is in H since e is in 
H and with {e, a} our 2 elements we have 𝑒𝑎−1 in H by the second property. Closure is because if a and 
b are in H, then we just showed that so is 𝑏−1, therefore so is 𝑎(𝑏−1)−1 = 𝑎𝑏. An analagous result can 
be proven the same way for the case that 𝑒, 𝑎−1𝑏 being in H is the condition. 



Lecture 4: 

Theorem: if H and K are subgroups of G then so is H∩K 

Proof: I will not go through the details, however it is now hard to check the axioms. 

Notation: 

For a set x, <x> means the smallest subgroup containing the set x. Equivalently, it is the intersection of 
all subgroups of a group which contain the entire set. This is called the group generated by the set x. 

Of course, the minimal group generated by a set is the set of products of a bunch of not necessarily 
distinct elements of the set with their inverses. 

There are many functions from ℂ to ℂ, however any random such function is not very interesting. 
However, we care about functions that preserve distance. 

Definition: An isometry on ℂ is a function f from ℂ to ℂ such that for any 2 points a and b in ℂ,                 
|a-b|=f(a)-f(b). In other words, f preserves distances. 

The set of isometries of ℂ is a group since the identity/do nothing function is an isometry, the inverse 
of an isometry is isometry, function composition (the implied operation) is associative, and the 
composition of isometries is an isometry. This is called the isometry group of ℂ. 

Lemma: if |𝑦1 − 𝑥1| = |𝑦2 − 𝑥1| and |𝑦1 − 𝑥2| = |𝑦2 − 𝑥2| then 𝑦1 − 𝑦2 is perpendicular to 𝑥1 − 𝑥2. 

Proof: We will do this visually. 

This image shows the kite lemma visually. 

Now we observe that the perpendicular bisector of a line segment is those points that are the same 
distance away from both ends of the line segment, which explains why the lemma is true. 

Theorem: If a, b, c are not colinear, and there is an isometry that sends a, b and c to themselves, then 
this isometry is the identity function. 

Theorem: Suppose that the hypotheses above are satisfied but that f is our isometry and f(d)≠d. 

Then, since f is an isometry and sends a b and c to themselves, |𝑓(𝑑) − 𝑓(𝑎)| = |𝑑 − 𝑎| = |𝑑 − 𝑓(𝑎)| 

Now let 𝑦1: = 𝑑 and 𝑦2: = 𝑓(𝑑) 

And in the case where 𝑥1: = 𝑎 and 𝑥2: = 𝑏 

Then the kite lemma tells us that the line through a and b is perpendicular to the line through d and 
f(d). But if 𝑥1: = 𝑎 and 𝑥2: = 𝑐 then the line through a and c is also perpendicular to the line through d 
and f(d), contradicting the fact that a, b and c are not colinear. 

Lecture 5: 



We will investigate the group 𝐷2𝑛 which is the group of symmetries of an n-sided polygon. 

We can interpret this as the group of isometries of ℂ that preserves the positions of the vertices but 
shuffles them around. 

The lecturer got stuck on a lot of random details, but essentially this group has size 2n because: 

1. There are n choices of where to move the point 1 to in any such isometry 
2. There are 2 choices of where to place the adjacent vertices 
3. The three point lemma from last lecture fixes the rest 

Theorem: Let s be a reflection (ie, each point is sent to its complex conjugate) and r be a rotation (ie, 

each point is multiplied by 𝑒
2𝑖𝜋

𝑛 , then 𝑠𝑟𝑘 = 𝑟−𝑘𝑠 

Proof: 𝑒
2𝑖̇𝑘𝜋

𝑛 𝑧
̅̅ ̅̅ ̅̅ ̅̅

= 𝑒
2𝑖̇𝑘𝜋

𝑛
̅̅ ̅̅ ̅̅

𝑧̅ = 𝑒
−2𝑖𝑘𝜋

𝑛 𝑧 ̅

Lecture 6: 

Defintion: Let (G, .) and (H, *) be groups. Then a function φ from G to H is called a homomorphism if 
for all a and b in G, φ(a.b)=φ(a)*φ(b). 

Definition: An isomorphism is a homomorphism which is a bijection. Essentially if two groups have 
an isomorphism between them then they are structurally the same. We say these groups are 
isomorphic. I will often talk about groups being the same when they are isomorphic. 

Example: A function from groups G to H that sends everything in G to the identity of H is a 
homomorphism, but it is trivial. 

Example: It is easy to see that if H is a subgroup of G, then a function H to G that sends all elements to 
the corresponding element in G is a homomorphism. 

Example: The set of square matrices of a certain size with non-zero determinant is a group. The 
determinant function is a function from these matrices to the non-zero real numbers that is a 
homomorphism because for matrices A and B, det(AB)=det(A)det(B) 

Theorem: Let φ be a homomorphism G to H. Then 𝜙(𝑒𝐺) = 𝑒𝐻 

Proof: 𝜙(𝑒𝐺)𝜙(𝑒𝐺) = 𝜙(𝑒𝐺𝑒𝐺) = 𝜙(𝑒𝐺). Therefore 𝜙(𝑒𝐺) is the identity, since it can be multiplied by 
itself and not change. 

Theorem: Let φ be a homomorphism G to H. Then 𝜙(𝑔−1) = 𝜙(𝑔)−1 

Proof: 𝜙(𝑔)𝜙(𝑔−1) = 𝜙(𝑔𝑔−1) = 𝜙(𝑒𝐺) = 𝑒𝐻, thus 𝜙(𝑔−1) is the inverse of 𝜙(𝑔). 

We write A≅B if A is a group isomorphic to B. Isomorphic groups are considered the same group. 

Example: 

The group of positive real numbers under multiplication is isomorphic to the group of all real numbers 
under addition due to the bijective homomorphism between them defined by the exponential 
function. 

Some obvious statements: 

1. If 𝜙 is an isomorphism so is 𝜙−1 



2. If 𝜙 and 𝜓 are isomorphisms so is 𝜙 ∘ 𝜓 
3. ≅ is an equivelence relation as defined in numbers and sets. 

Definition: The image of a homomorphism 𝜙 is the set of stuff 𝜙 maps to. 

Definition: The kernel of a homomorphism 𝜙 is the set of elements x such that 𝜙(𝑥) is the identity. 

Theorem: Let 𝜙 be a homomorphism G to G. Then the kernel and image of 𝜙 are subgroups of G. 

Proof: 

Image: 

𝑒 = 𝜙(𝑒) so the identity is in the image 

𝜙(𝑔)−1 = 𝜙(𝑔−1) so inverses of stuff in the image are in the image 

𝜙(𝑎)𝜙(𝑏) = 𝜙(𝑎𝑏) so products of stuff in the image is in the image. 

Kernel: 

𝜙(𝑒) = 𝑒 so the identity is in the kernel 

If g is in the kernel 𝜙(𝑔) = 𝑒 = 𝑒−1 = 𝜙(𝑔)−1 = 𝜙(𝑔−1) so inverses of stuff in the kernel are in the 
kernel. 

If 𝜙(𝑎) = 𝜙(𝑏) = 𝑒 then 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏) = 𝑒𝑒 = 𝑒 so we have closure. 

Lecture 7: 

Proposition: 

i) A homomorphism G to H is surjective if and only if its image is H 
ii) A homomorphism G to H is injective if and only if its kernel is {e} 

This result is useful since it allows us to more easily check if a homomorphism is an isomorphism, 
since an isomorphism is a homomorphism that is injective and surjective. 

Proof: 

i) This is basically just the definition of surjective. 
ii) Let φ be a homomorphism G to H and suppose it is injective. By the definition of injectivity, 

only one element can map to the identity of H. Since the identity of G is such an element, it 
must be the only one, so the kernel of G is {e}. Conversely, suppose that the kernel of G is 
{e}. Then we want to prove injectivity by supposing φ(a)=φ(b) and showing that this implies 
a=b. So, if φ(a)=φ(b) then 𝜙(𝑎𝑏−1) = 𝑒 by homomorphism properties and since the kernel 
is just e, it means that 𝑎𝑏−1 = 𝑒 so 𝑎 = 𝑏, completing the proof. 

Definition: A cyclic group is a group generated by a single element. For example, the n’th roots of 1 

under multiplication are generated by 𝑒
2𝜋𝑖

𝑛 . And the integers mod n under addition is generated by 1. 

Proposition: In fact, all cyclic groups are isomorphic to either the integers under addition (if they are 
infinite) or the integers mod n under addition (Which we call 𝐶𝑛 if they have size n for finite n). 

Proof: 



Let G be generated by g and S be the set of integers k with 𝑔𝑘 = 𝑒. If some number x is in S, then so is -
x since the inverse of the identity is the identity, and 0 is trivially in S, so we can just think about the 
positive elements of the set. 

If S={0} then we never reach the identity – We define a map from ℤ to G by sending 𝑘 → 𝑔𝑘. This is a 
bijection, since all powers of g are mapped to and the kernel is just 0 since nothing else is in S. 

Otherwise let y be the smallest positive element of S, allowed by the well ordering principle. Then the 
map 𝐶𝑦 to G by sending 𝑘 → 𝑔𝑘 is a homomorphism since 𝑘 + 𝑗(𝑚𝑜𝑑 𝑦) → 𝑔𝑘+𝑗 = 𝑔𝑘+𝑗 𝑚𝑜𝑑 𝑦 since 
𝑔𝑦 = 𝑒. Its kernel is {0} since if something else z was in the kernel smaller than y then 𝑔𝑧 = 0 with 
0<z<y contradicting the definition of y. Its image is the entire group generated by G has only y distinct 
elements, since any powers of g can be reduced mod y to something between 0 and y-1, and y 
different elements get mapped to. So therefore the proof of the proposition is complete. 

The order of an element g which we also write as |g| or o(g) is defined as the smallest power of g that 
equals the identity. 

Proposition: Any group of size 2n with elements 𝑟, 𝑠 such that 𝑟𝑛 = 𝑒 = 𝑠2 and 𝑟𝑠 = 𝑠𝑟−1 is 
isomorphic to 𝐷2𝑛. 

Proof: We construct here the cayley table and demonstrate that it is unique. This means that the 
element in the cell of the cayley table is equal to the element in the leftmost column on that row times 
the element in the topmost row on that column. 

The entries highlighted in yellow of the following cayley table (which I claim is unique) are trivially set 
in stone from the definition above. Note that s is not a power of r otherwise the group would have size 
n, and thus all elements here are indeed distinct. 

This image shows the cayley table. 

Now we know what multiplying by r on the right will do, so in fact we get some more information for 
free. 



This image shows the cayley table with more things 
highlighted as known for sure. 

Lemma: 𝑟𝑎𝑠 = 𝑠𝑟−𝑎 

Proof: 𝑟𝑠𝑟 = 𝑠 from the table above and therefore 𝑠𝑟−𝑎 = (𝑟𝑠𝑟)𝑟−𝑎 = 𝑟𝑠𝑟1−𝑎. We can apply this 
repeatedly to get 𝑠𝑟−𝑎 = 𝑟𝑠𝑟1−𝑎 = 𝑟2𝑠𝑟2−𝑎 = ⋯ 𝑟𝑎𝑠. This fills in the blue cells in the image below and 
thus the purple ones since we can multiply by r on the right. 

This image is also of the Cayley table with stuff 
highlighted. 

Now it remains to prove that 𝑠𝑟𝑎𝑠 = 𝑟−𝑎 to get the rest of the column with the blue stuff since 
multiplying by r on the right will give us the rest of the table. To show this is easy: Just multiply s on the 
left on both sides of the equation 𝑟𝑎𝑠 = 𝑠𝑟−𝑎. So done. 

Lecture 8: 

Theorem (Lagrange’s theorem): If H is a subgroup of G and G is finite then |H| divides |G|. This lecture 
is about this theorem and its proof. The idea of the proof is pretty simple and obvious once you get it. 

Definition (Left coset): Let H be a subgroup of G and g be an element of G, then the corresponding left 
coset is the set of elements gh with h in H. The right coset would be defined similarly as the set of 
elements hg with h in H and the proofs we will do this lecture would be the same. 

G\H is defined to be the set of left cosets with respect to H. 

Lemma: 

i) The union of cosets in a group with respect to any subgroup equals the entire group 
ii) Cosets are either equal or have empty intersection 



Proof: If you have been paying attention this will have reminded you of Equivelence relations from 
Numbers and Sets. Essentially we will show that the relation a~b if 𝑎−1𝑏 ∈ 𝐻 is an equivelence 
relation and that a~b is equivalent to a and b being in the same coset so that the cosets are actually 
the equivelence classes. The lemma will follow from basic properties of equivelence relations, ie that 
they partition sets. 

First, we will show that if a~b then b is in a’s coset. We know that 𝑎−1𝑏 ∈ 𝐻 since a~b by assumption 
and therefore 𝑎(𝑎−1𝑏) = 𝑏 is in a’s left coset with respect to H. But then b’s left coset with respect to h 
contains 𝑏 = 𝑏𝑒 since the identity is in H since H is a subgroup of G. Conversely, if b is in a’s coset 
then 𝑏 = 𝑎𝑥 with x in H, but then since 𝑥 = 𝑎−1𝑏 by simple group algebra we have that 𝑎−1𝑏 ∈ 𝐻. Now 
it remains to show that this is an equivelence relation so it can follow that the cosets are indeed 
equivelence classes. 

Reflexive: a~a since 𝑒 = 𝑎−1𝑎 ∈ 𝐻. 

Symmetric: If a~b then 𝑎−1𝑏 ∈ 𝐻 so by inverses, (𝑎−1𝑏)−1 = 𝑏−1𝑎 ∈ 𝐻 so b~a. 

Transitive: if a~b and b~c then 𝑎−1𝑏, 𝑏−1𝑐 ∈ 𝐻 so by closure 𝑎−1𝑐 ∈ 𝐻 so a~c so done. 

Lemma: Fix g in G and a subgroup H of G. Then the map 𝐻 → 𝑔𝐻 (meaning you multiply everything in H 
by g on the left to get the output) is a bijection. 

Proof: Immediate from the fact that a bijection is exactly a map which has a left and right inverse from 
Numbers and Sets, and such an inverse is given by 𝐾 → 𝑔−1𝐾 so the original map must be a bijection. 

Definition: The index of a subgroup, denoted |G:H| is the number of cosets in G with respect to H. 

However, now we know from the previous lemmas that all cosets with respect to H are the same size 
and they neatly partition G, and thus |H||G:H|=|G|, so |H| divides |G|. 

Geometric example of a coset: The set of symmetries of a shape that move a specific vertex to a 
specific location. also in 𝐷2𝑛 the set of rotations and the set of elements involving a reflection are 
cosets as well. 

Lets see some examples of why this is useful: 

Corollary: The order of an element divides the order of a finite group, because the order of the 
subgroup generated by that element equals the order of that element which divides the order of the 
group by Lagrange’s theorem. 

Corollary: 𝑔|𝐺| = 𝑔|𝐺:<𝑔>||<𝑔>| = (𝑔|<𝑔>|)
|𝐺:<𝑔>|

= 𝑒|𝐺:<𝑔>| = 𝑒. 

Corollary: Groups of prime order must be cyclic and generated by all non-identity elements. 

Lecture 9: 

Let φ(n) be the number of integers from 1 to n-1 inclusive that do not have any common factors with n. 
For some n, let G be the set of such integers with multiplication mod n. If y is in g, there exists integers 
x and m (this is proven in numbers and sets) such that xy+mn=1, so xy=1modn, so x is an inverse to y. 
1 is an identity and multiplication is associative. Now we just need to check closure: Suppose 𝑎𝑏 = 𝑐 
and c and n share a common factor: 𝑐𝑏−1 = 𝑎 and a is a multiple of c so it also must share the same 
common factor which is a contradiction, so c is indeed in the set so it is a group. 



Now we know that for all g in a group, 𝑔|𝐺| = 𝑒, so in our case this means that if a is coprime to n 
(meaning a and n share no common factors), then 𝑎𝜙(𝑛) = 1mod𝑛. This is the Fermat-Euler theorem 
which is proven in numbers and sets, but this proof is here to demonstrate that group theory is 
actually useful. 𝑎𝑝−1 = 1mod𝑝 which is Fermat’s little theorem for prime p is immediate from this. 

Now we will talk more about the symmetry side of things by talking about group actions. 

Definition: An action of a group G on a set X is a map from G*X to X. We write (𝑔, 𝑥) → 𝑔𝑥, you can 
think of it as what g does to x. It’s like each element of g corresponds to a permutation of the elements 
in x. 

Rules for actions: 

1. ex=x always 
2. (gh)x=g(hx) always 

We write G⟳x to mean G acts on x. If gx=x always this is the trivial action. 

Example: 𝑆𝑛 acts on the set {1, 2, 3, … , n} such that if f is a permutation in 𝑆𝑛 then fx=f(x). 

Example: A subgroup acts on the same set as its parent group. 

Example: The group of isometries of ℂ acts on ℂ. 

Example: 𝐷2𝑛 acts on the vertices of a polygon. 

Example: All groups act on themselves such that for elements g and x in g, gx=gx, where one side 
means the action notation and the other side means g and x are being multiplied within the group. 
This is called the left regular action. 

Proposition: An action of a group G on a set X is a homomorphism 𝜙: 𝐺 → 𝑆𝑦𝑚(𝑥). 

Proof: Suppose G⟳X. Let 𝑡𝑔 be the map from X to X that sends 𝑥 to 𝑔𝑥. 

This is a bijection because its inverse is the map that sends 𝑥 to 𝑔−1𝑥. 

This is indeed an inverse because 𝑔−1(𝑔(𝑥)) = 𝑔(𝑔−1(𝑥)) = 𝑒𝑥 = 𝑥 since we have defined actions to 
work this way. 

However, 𝑡𝑔 is now an element of Sym(x) since it is a permutation on x. So define the map 𝜙: 𝑔 → 𝑡𝑔. 

This is a homomorphism because 𝜙(𝑔ℎ) = (𝑡𝑔ℎ) = 𝑡𝑔 ∘ 𝑡ℎ, since                                                              
𝑡𝑔ℎ(𝑥) = (𝑔ℎ)𝑥 = 𝑔(ℎ𝑥) = 𝑡𝑔 ∘ 𝑡ℎ(𝑥). So done. 

Conversely, given a homomorphism 𝜙: 𝐺 → 𝑆𝑦𝑚(𝑥) we can define an action G⟳X with 𝑔𝑥 = 𝜙(𝑔)𝑥. 
This is indeed an action since (𝑔ℎ)𝑥 = 𝜙(𝑔)𝜙(ℎ)𝑥 = 𝑔(ℎ𝑥) and 𝑒𝑥 = 𝜙(𝑒)𝑥 = 𝑥. 

Theorem (Cayley’s theorem): Every group is isomorphic to a subgroup of a symmetric group. 
Furthermore, if G is finite, then G is a subgroup of Sym(x) for some finite x. 

Proof: Since G⟳G by the left regular action, then this is equivalent to a homorphism 𝜙: 𝐺 → 𝑆𝑦𝑚(𝐺) 
by the previous proposition. Let H be the image of 𝜙, then since homomorphisms inherit associativity, 
send products to products, inverses to inverses and identities to identities so H is a subgroup of 
Sym(G). We need to prove that 𝜙 is an isomorphism: It is surjective since we defined H to be the 



image, so we just need to prove that ker(φ)=e. If g Is in ker(φ) then 𝜙(𝑔) = 𝑒, and since this is the 
identity in Sym(g), this means that gx=x for all x in g, thus g=e so done. 

The intuitive idea for why the theorem above is true is that each element in G corresponds to a 
permutation in G – Multiplying each element in G on the left by that element permutes the elements. 

Definition: Suppose G⟳X and x∈X. Then the orbit of x is the set of all gx with g in G. Example: The orbit 
of a vertex in the context of 𝐷2𝑛 is the set of places that the vertex can go to under the symmetries, 
which in that case is all of them. This is often written as 𝐺𝑥. An action is transitive if any x can be 
taken to any other, such as in the case of 𝐷2𝑛. 

Definition: If we have the same setup as above, then the stabilizer of x is the elements g in G such that 
x=gx. This is often written as 𝐺𝑥 or 𝑆𝑡𝑎𝑏𝐺(𝑥). An action is faithful if the every element in g except the 
identity does not do nothing to the set it is acting on. 

Lecture 10: 

Remark: An action G on X is faithful if and only if the associated homomorphism G to Sym(X) is 
injective. 

Proposition: 

i) Suppose G acts on X. Then for any x in X, the stabilizer of x is a subgroup of G. 
ii) Every element of X is in exactly one orbit, ie the orbits form a partition of X. 

Remark: ii) will imply that transitivity is equivalent to the statement “there is only one orbit”. 

Proof (i) 

To check if a set is a subgroup, we need to check if e is in the subgroup and if 𝑎𝑏−1 is in the subgroup 
for all a and b. I don’t know why the lecturer is checking the axioms individually and never proved this 
criterion to save time. Clearly, the identity is in the stabilizer of x since it does nothing to x. Also, if a 
and b are in the stabilizer, they do nothing to x, so 𝑎𝑏−1 also does nothing to x. So done. 

Proof (ii) 

Lets check that being in the same orbit is an equivelence relation. This turns out to be really nice as 
the three conditions for an equivelence relation correspond to three of the group axioms: 

1. Reflexive – x is in its own orbit because of the identity, so this corresponds to existence of an 
identity element. 

2. Symmetric – If x is in y’s orbit then y is in x’s orbit by the inverse of the element that sends y to x, 
so this corresponds to existence of inverses. 

3. Transitive – If x is in y’s orbit and y is in z’s orbit, then x is in z’s orbit by taking the product of the 
element sending z to y with the element sending y to x, so this corresponds to closure. 

Example: in 𝐷2𝑛 the stabilizer of a vertex of the n sided polygon it is acting on are exactly the elements 
which fix it. This always contains the identity and the element that reflects everything about the line 
through that vertex and the center of the polygon. Notice that the size of the orbit times the size of the 
stabilizer equals the size of the group: This is an important general theorem which we will prove 
shortly, but the idea is that the vertex has n places it can go to and exactly 2 ways to go to each vertex 
so there are 2n total combinations. 



Theorem (Orbit stabiliser theorem): For any group G acting on X, for an element in x, 
|Orbit(x)||Stab(x)|=|G|. Equivalently, the orbit is in bijection with the cosets of the stabilizer since this 
by Lagrange’s theorem would imply |Orbit(x)||Stab(x)|=|G|. 

Proof: 

Lets write S to mean Stab(x). Lets define Φ: 𝑔𝑆 → 𝑔𝑥. Our goal is to show that this is well defined and 
that it is a bijection from the cosets of S to the orbit of x. 

To check that this is well defined, we need to show that if 𝑔1𝑆 = 𝑔2𝑆 then 𝑔1𝑥 = 𝑔2𝑥. 𝑔1𝑆 = 𝑔2𝑆 
means that there is an s in S such that 𝑔1 = 𝑔2𝑠. But 𝑔1𝑥 = (𝑔2𝑠)𝑥 = 𝑔2(𝑠𝑥) = 𝑔2𝑥 by the definition of 
S, so that proves Φ is well defined. 

Proof Φ is surjective: For any gx in the orbit of x, we just need to take the coset constaining g. 

Proof Φ is injective: Suppose Φ(g1𝑆) = Φ(g2𝑆). Let 𝑠 = 𝑔2
−1𝑔1, then 𝑠𝑥 = 𝑔2

−1𝑔1𝑥. But               
Φ(g1𝑆) = Φ(g2𝑆) so 𝑔1𝑥 = 𝑔2𝑥. Therefore 𝑠𝑥 = 𝑔2

−1𝑔2𝑥 = 𝑥, so by definition of S, s is in S. This means 
that g1𝑆 = g2𝑆 as in they are the same coset. So this proves injectivity, so done. 

Example: Consider the group G of symmetries (isometries) of a cube. 

Let x be the center of a face. Then there are eight elements in Stab(x): This is because there are eight 
symmetries of the face so this is exactly 𝐷8. 

The orbit of x has size 6 since x can go to any of the 6 faces. 

So, by the orbit stabiliser theorem, G has size 48. The intuition is that x can go to any of the 6 faces and 
then the faces can be rotated 4 times, by thinking like this the orbit stabiliser theorem becomes 
intuitive. Even though we have not analyzed this group much at all, we can deduce its size. 

Lecture 11: 

Theorem (Cauchy’s Theorem): If G is a finite group and p is a prime that divides the order of G, then G 
has an element of order p. This is a tricky proof because we consider some things where it is not 
obvious why we are considering them. 

Proof: Consider the set X of lists of length p of elements in G (p-tuples, not necessarily distinct) 
{𝑔1, 𝑔2, 𝑔3, … 𝑔𝑝} such that the product 𝑔1𝑔2 … 𝑔𝑝 = 𝑒. Define the action of 𝐶𝑝 on the tuple such that 
for 𝑡𝑥  in 𝐶𝑝 where t generates 𝐶𝑝,and if 𝑥 ∈ 𝑋 = {𝑔1, 𝑔2, … 𝑔𝑝}, 𝑡𝑥𝑥 = {𝑔𝑥+1, 𝑔𝑥+2, … , 𝑔𝑝, 𝑔1, … 𝑔𝑥}. It is 
easy to see that this satisfies the definition of an action. Lets check that it is indeed the case that 
𝑔𝑥+1𝑔𝑥+2 … 𝑔𝑝𝑔1 … 𝑔𝑥 = 𝑒. Let   𝑎 = 𝑔1 … 𝑔𝑥, 𝑏 = 𝑔𝑥+1, 𝑔𝑥+2, … 𝑔𝑝. Then ab=e implies ba=e since 
inverses are two sided, so 𝑡𝑥𝑥 is in x. Note that if we pick the elements in g in order there are |G| ways 
to pick the first p-1 elements then the last one is constrained (it must be the inverse of the product of 
the first p-1 elements of our set) to make the product be the identity, so there are |𝐺|𝑝−1 lists in X. 

One principle in maths is that counting something in two different ways always gives interesting 
results. We know that the 𝐶𝑝 action partitions x into orbits, suppose there are k. We know by the orbit 
stabilizer theorem that the size of any orbit has to divide the order of the group which is p, and thus 
must be either 1 or p. Let l be the number of orbits of size 1. Lets order the x’s such that the size of the 
orbit of some x is 1 exactly when x is in the first l elements of our order. So, since the orbits partition X, 
|𝑋| = 𝑙 + 𝑝(𝑘 − 𝑙), as X is partitioned into l orbits of size 1 and k-l orbits of size p. But |𝑋| = |𝐺|𝑝−1, but 
since p divides |G|, p must divide |X| and thus p divides l. If an orbit of a set x is of size 1, that means 



shifting the elements in x does not change the contents of the set. Essentially we know that all of the 
elements of x are the same if and only if the size of the orbit of x is 1. In particular, {e, e, e, … e} is one 
such list. Therefore l>0, but p divides l so l is not 1 so there is another tuple {g, g, g, … g}. This implies g 
has an order which divides p, and thus has order p by definition. So done. 

Definition: Let G be a group and g,h be elements. The element ℎ𝑔ℎ−1 is called the conjugate of g by h. 
Notice that this is similar to diagonalizing matrices. This is essentially saying do h backwards, do g 
then do h. 

Example: If G is an abelian group, then for any g,h in g, ℎ𝑔ℎ−1 = 𝑔 since ℎ𝑔 = 𝑔ℎ. Therefore in an 
abelian group, the whole conjugate idea is trivial. 

Definition: All of the elements conjugate to g by some element is called the conjugacy class of g. This 
is denoted ccl(g). 

Note: G acts on itself by conjugation, ie ℎ(𝑔) = ℎ𝑔ℎ−1. This is another way a group can act on itself. It 
is easy to check that this is an action, and the conjugacy classes are exactly the orbits under this 
action and therefore partition G. 

Definition: The centraliser of g is the set of h in g such that {ℎ𝑔ℎ−1 = 𝑔}. This is the stabilizer of g 
under the conjugation action. It is exactly the elements of h that commute with g since ℎ𝑔ℎ−1 = 𝑔 if 
and only if ℎ𝑔 = 𝑔ℎ. It is a subgroup of G since it is a stabilizer of an action. 

Definition: The center of G, denoted Z(G) is the elements h in G such that hg=gh for all g in G. This is 
the intersection of all centralisers of the elements of G. Since we know that the intersection of 
subgroups is a subgroup, the center of G is a subgroup of G. 

Lecture 12: 

The mobius group is a group of some bijections from ℂ to ℂ, with the subtle difference that we are 
working in ℂ plus an additional point which we call ∞. In this context we will consider dividing by zero 
to give infinity. 

Now lets put the unit sphere into 3D space (x, y, z) with the x-y plane being the complex plane. What 
you can see is that there is a bijection from points on this sphere to {ℂ ∪ ∞}, by drawing a straight line 
from (0, 0, 1) (which we call the north pole) to the point on the sphere and seeing where it hits the 
complex plane. The point (0, 0, 1) on the sphere is defined to map to the point at infinity, ie the ∞ 
point. The intuition is that as we get close to the north pole, the corresponding point on the complex 
plane gets “closer” to infinity, ie larger. 

Definition: Let a, b, c, d be complex numbers such that ad-bc is not zero. Then we define a map f from 

ℂ ∪ ∞ to ℂ ∪ ∞ by 𝑓(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
. If 𝑧 = −

𝑑

𝑐
, we say that f maps to the point at infinity. The point at infinity 

maps to 𝑎
𝑐

, since as z gets large it is easy to see that 𝑎𝑧+𝑏

𝑐𝑧+𝑑
 goes to 𝑎

𝑐
. 

If c=0, then ∞ maps to ∞ and everything else maps to 𝑎𝑧+𝑏

𝑑
. 

The set of such maps under composition is called the mobius group. 

We need to check that this is actually a group. Function composition is associative,the identity is the 
case c=0, d=1, a=1, b=0. By some easy but tedious algebra one can check that the composition of two 



such functions is another such function. An inverse can be given by 𝑑𝑧−𝑏

𝑎−𝑐𝑧
, and again this is easy but 

tedious to check, and in checking this we will actually use the fact that ad-bc is not 0. 

We see that (
𝑎1 𝑏1

𝑐1 𝑑1
) (

𝑎2 𝑏2

𝑐2 𝑑2
) = (

𝑎1𝑎2 + 𝑏1𝑐2 𝑎1𝑏2 + 𝑏1𝑑2

𝑐1𝑎2 + 𝑑1𝑐2 𝑐1𝑏2 + 𝑑1𝑑2
), and that 𝑎1𝑧+𝑏1

𝑐1𝑧+𝑑1
∘

𝑎2𝑧+𝑏2

𝑐2𝑧+𝑑2
=

𝑎1𝑎2+𝑏1𝑐2𝑧+𝑎1𝑏2+𝑏1𝑑2

𝑐1𝑎2+𝑑1𝑐2𝑧+𝑐1𝑏2+𝑑1𝑑2
, so composing these maps is like matrix multiplication. 

These functions are called mobius transformations and we will investigate their fixed points, ie points 
such that f(z)=z. 

Proposition: If a mobius transformation fixes 3 points, it must be the identity. 

Proof: A fixed point satisfies 𝑤 =
𝑎𝑤+𝑏

𝑐𝑤+𝑑
. If one of the fixed points infinity, then this is only a fixed point if 

c=0, so the equation becomes dw=aw+b. This means 𝑤 =
𝑏

𝑎−𝑑
, so there is only 1 (possibly infinite) root 

unless a=d and b=0 in which case we have the identity. Otherwise, 𝑐𝑤2 + 𝑑𝑤 = 𝑎𝑤 + 𝑏, which only 
has at most 2 roots unless d=a and c=b=0, in which case we again have the identity map. So done. 

Note that in fact we always must fix at least one point: In the first case where infinity is fixed this is 
trivial, and 𝑐𝑤2 + 𝑑𝑤 = 𝑎𝑤 + 𝑏 always has a root unless d=a and c=0, in which case the fact that c=0 
means infinity is a fixed point. 

For a mobius map µ, we define Fix(µ)={the fixed points of µ}. Example: If µ(z)=2z, then Fix(µ)={0,∞}. 

Proposition (Triple Transitivity): For any triples of distinct points, there exists a unique mobius map 
that moves them to any other triple of distinct points. 

Proof: Lets write down a mobius transformation 𝑎 ≔
(𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧3)(𝑧2−𝑧1)
. One checks that this sends 𝑧1 to 0, 

𝑧2 to 1 and 𝑧3 to infinity. If we define 𝑏 ≔
(𝑧−𝑤1)(𝑤2−𝑤3)

(𝑧−𝑤3)(𝑤2−𝑤1)
, then 𝑏−1 ∘ 𝑎 sends 𝑧1 to 𝑤1, 𝑧2 to 𝑤2, 𝑧3 to 𝑤3. 

This is unique as if there was transformations f and g that sent 3 points to the same 3 points, then      
𝑓 ∘ 𝑔−1 fixes those 3 points so it must be the identity by the previous proposition. 

The mobius group M acting on ℂ ∪ ∞ is triply transitive, meaning that it sends any triple of 3 points to 
any other triple of 3 points. It is sharply triply transitive because this happens in a unique way. 

Definition: Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 be in ℂ ∪ ∞. There is a unique a in M such that 𝑎(𝑧1) = 0, 𝑎(𝑧2) = 1,

𝑎(𝑧3) = ∞. Then we define the cross ratio [𝑧1, 𝑧2, 𝑧3, 𝑧4] ≔ 𝑎(𝑧4). Since 𝑎 =
(𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧3)(𝑧2−𝑧1)
 from earlier, 

this means that [𝑧1, 𝑧2, 𝑧3, 𝑧4] =
(𝑧4−𝑧1)(𝑧2−𝑧3)

(𝑧4−𝑧3)(𝑧2−𝑧1)
. 

Lecture 13: 

Proposition: The mobius transformations 

𝑧 → 𝑎𝑧, 𝑧 → 𝑧 + 𝑏, 𝑧 → 𝑧−1 generate the mobius group. 

Proof: 

Let µ be an arbitrary mobius transformation, and let 𝑧1 = 𝜇(0), 𝑧2 = 𝜇(1), 𝑧3 = 𝜇(∞). Construct 𝜇1 

such that 𝜇1(𝑧3) = ∞. Then either 𝜇1 is the identity (if 𝑧3 = ∞) or 𝜇1 =
𝑐

𝑧−𝑧3
 where 𝑧 = 𝑧3. Let             



𝑧1
′ = 𝜇1(𝑧1) and 𝑧2

′ = 𝜇2(𝑧2). Let 𝜇2(𝑧) = 𝑧 − 𝑧1′. Then note that 𝜇2(∞) = ∞ and 𝜇2(𝑧1′) = 0. Let 𝑧2
′′ =

𝜇2(𝜇1(𝑧2)). Let 𝑎 =
1

𝑧2
′′ and 𝜇3(𝑧) = 𝑎𝑧, then 

 𝜇3 ∘ 𝜇2 ∘ 𝜇1(𝑧1) = 0, 𝜇3 ∘ 𝜇2 ∘ 𝜇1(𝑧2) = 1, 𝜇3 ∘ 𝜇2 ∘ 𝜇1(𝑧3) = ∞. 

Therefore, if we invert 𝜇3 ∘ 𝜇2 ∘ 𝜇1, we get back 𝜇, and it must be exactly 𝜇 by the three point lemma 
from earlier, but we know that each of 𝜇1, 𝜇2, 𝜇3 was a composition of stuff that we claimed was from 
the generating set, and thus so is 𝜇. So done. 

Definition: A circle in this context is either a normal circle or a line which includes the point at infinity. 

Normal circles are defined by an equation |𝑧 − 𝑐| = 𝑟. Lines can be defined by |𝑧 − 𝑎| = |𝑧 − 𝑏| as this 
equation describes the perpendicular bisector of AB. 

Theorem: Under mobius transformations, circles get sent to circles. (Or, in the normal sense, lines or 
circles are sent to either lines or circles). 

Proof: 

Recall that we have the generating set from before. Clearly, under scaling or rotation or shifting, 

circles are preserved, so we just have to show that the transformation 𝑧 →
1

𝑧
 preserves circles. 

Lets say we have a circle |𝑧 − 𝑐| = 𝑟, then under this transformation, we have |1

𝑧
− 𝑐| = 𝑟. We can use 

the equation for a circle which we derive in lecture 2 of Vectors and Matrices to get that                       
1

|𝑧|2 −
𝑐

𝑧̅
−

𝑐̅

𝑧
+ |𝑐|2 − 𝑟2 = 0. Therefore (|𝑐|2 − 𝑟2)|𝑧|2 − 𝑐𝑧 − 𝑐𝑧̅ + 1 = 0. If |𝑐| = 𝑟, then this equation is 

saying 𝑐𝑧 + 𝑐𝑧̅ = 1. Therefore we have that |𝑧|2 = |𝑧|2 −
𝑧̅

𝑐
−

𝑧

𝑐̅
+

1

|𝑐|2 = |𝑧 −
1

𝑐
|

2

. Therefore, we have 

|𝑧| = |𝑧 −
1

𝑐
| which is the equation for a line. It makes sense – If you take a circle through the origin and 

invert it, we stretch it out. 

If |𝑐| ≠ 𝑟, then the equation (|𝑐|2 − 𝑟2)|𝑧|2 − 𝑐𝑧 − 𝑐𝑧̅ + 1 = 0 becomes                                                        

|𝑧|2 −
𝑐𝑧

(|𝑐|2−𝑟2)
−

𝑐𝑧̅̅ ̅

(|𝑐|2−𝑟2)
+

1

(|𝑐|2−𝑟2)
= 0. The equation |𝑧 −

𝑐

|𝑐|2−𝑟2
|

2

=
|𝑐|2

(|𝑐|2−𝑟2)2
−

1

|𝑐|2−𝑟2
is the same as 

this, by the vectors and matrices formula, and this is the equation for a circle. So done. 

Corollary: Four points lie on a circle if and only if their cross ratio is either real or it is infinity. 

Proof: Pick 3 points and let them define a circle and suppose we want to test if a fourth point lies on 
that circle. Let a be the mobius transformation sending 𝑎(𝑧1) = 0, 𝑎(𝑧2) = 1, 𝑎(𝑧3) = ∞ (By a previous 
proposition this exists and is unique), then 𝑎(𝑧4) = [𝑧1, 𝑧2, 𝑧3, 𝑧4] (This is exactly the cross ratio as 
defined last lecture). But then if 𝑧1, 𝑧2, 𝑧3, 𝑧4 lie on a circle then since circles are preserved, it means 
that 𝑎(𝑧4) must be real or infinity since 𝑎(𝑧1), 𝑎(𝑧2), 𝑎(𝑧3) lie on the real line with infinity, which we 
defined to be a circle. Therefore the cross ratio is real or infinity. Conversely, if the cross ratio is real or 
infinity, then 𝑎−1(0, 1, ∞, [𝑧1, 𝑧2, 𝑧3, 𝑧4]) = (𝑧1, 𝑧2, 𝑧3, 𝑧4) and thus since 0, 1, ∞, [𝑧1, 𝑧2, 𝑧3, 𝑧4] lies on a 
circle, so does 𝑧1, 𝑧2, 𝑧3, 𝑧4 by preservation of circles.  

Lecture 14: 

We will now start trying to find all the groups by order up to isomorphism. 

There is only one group of order 1 and that is the trivial group. 



Lets try to classify the groups of order 2. But remember all groups of prime order must be cyclic. 
Therefore this gives that 2, 3, 5, 7, 11, … has only one group up to isomorphism. 

Now lets do order 4. We always have 𝐶4 for the case where every element has order 4. So otherwise, 
every element has to have order 2. We will do a new definition before we construct this group. 

Definition (Direct product): If G, H are groups, their direct product (written GxH) is the group of 
ordered pairs (g, h) with the operation defined in the obvious way (component-wise), and identity       
(e, e). We can see that associativity is inherited and that the inverse has the inverses in each 
coordinate. 

The Klein-Four group is defined as 𝐾4 ≔ 𝐶2 ⨯ 𝐶2. This is not isomorphic to 𝐶4 since every non-identity 
element has order 2. Before we prove that these are in fact all the groups of order 4, we will talk more 
about direct products. 

Theorem (Direct product theorem): If 𝐻1, 𝐻2 are both subgroups of a group G, and 𝐻1 ∩ 𝐻2 = {𝑒}, and 
everything in 𝐻1 commutes with everything in 𝐻2 (ie ℎ1ℎ2 = ℎ2ℎ1), and the set of elements 𝐻1𝐻2 is in 
fact all of G, then G is isomorphic to 𝐻1 ⨯ 𝐻2. 

Proof: Notice how we will use all the hypotheses given in the theorem statement – If we don’t, then 
something has either gone wrong, or the hypotheses are redundant. Here we assume ℎ1, ℎ2 are in 𝐻1 
and 𝐻2 respectively. Lets define a map 𝜙: 𝐻1 ⨯ 𝐻2 → 𝐺 such that (ℎ1, ℎ2) → ℎ1ℎ2. This is a 
homomorphism because for any ℎ1, ℎ1

′ , ℎ2, ℎ2
′ , (ℎ1, ℎ2)(ℎ1

′ , ℎ2
′ ) = (ℎ1ℎ1

′ , ℎ2ℎ2
′ ) = ℎ1ℎ1

′ ℎ2ℎ2
′ = ℎ1ℎ2ℎ1

′ ℎ2
′  

by the hypothesis that these things commute. Therefore we have a homomorphism. 

It is surjective by the assumption that the set of elements 𝐻1𝐻2 is all of G. 

It is injective because if ℎ1ℎ2 = 𝑒, then ℎ2 = ℎ1
−1 which is in 𝐻1 and thus in 𝐻1 ∩ 𝐻2 so it must be the 

identity. Thus the kernel is trivial, so injective, so done. 

Now suppose we have a group of order 4 with every element having order 2. 

Remark: If 𝐻1, 𝐻2 have trivial intersection, then we know that |𝐻1||𝐻2| = |𝐻1𝐻2|. 

Proposition: If |G|=4, G is isomorphic to either 𝐶4 or 𝐾4. 

Proof: By Lagrange’s theorem, either there is an element of order 4 so we are looking at the cyclic 
group. If not, every element except for the identity must have order 2. Let a, b be elements in G with 
order 2. Let 𝐻1 be generated by a and 𝐻2 generated by b. It is immediate from the previous remark that 
𝐻1𝐻2 is in G. But it has order 4 so it must be all of G. We know that if a group has all elements of order 
2, all elements commute. You should try to prove this yourself before reading on – it’s not very difficult. 

The proof is that 𝑎𝑏 = (𝑎𝑏)−1 = 𝑏−1𝑎−1 = 𝑏𝑎, since everything is self-inverse. So from the direct 
product theorem, we have 𝐾4. 

Another application of DPT is to find when a product of Cyclic groups is Cyclic. If Gcd(m,n)=1, then 
𝐶𝑚 ⨯ 𝐶𝑛 is isomorphism to 𝐶𝑚𝑛. 

Proof: Let 𝐶𝑚𝑛 =< 𝑔 >. Let 𝐻1 =< 𝑔𝑛 >≅ 𝐶𝑚, 𝐻2 =< 𝑔𝑚 >≅ 𝐶𝑛. 𝑔𝑘 is in 𝐻1 if and only if n divides k 
and 𝑔𝑘 is in 𝐻2 if and only if m divides k. Since m and n are coprime, 𝑔𝑘 is in 𝐻1 ∩ 𝐻2 if and only if mn 
divides k, and thus the intersection is the trivial group. 𝐶𝑚𝑛 is abelian so that condition is immediate. 
And we know that 𝐶𝑚 ⨯ 𝐶𝑛 gives the whole group since it has the right size. So done. 



Now lets move onto order 6. We claim that 𝐶6, 𝐷6 are the only ones. We note that 𝐷6 ≅ 𝑆3 since 𝐷6 is 
all the permutations of the vertices so it is essentially the same thing. By cauchy’s theorem, let G have 
order 6, then there is an element s with order 2 and r with order 3. By Lagrange’s theorem, the biggest 
non-trivial subgroup we can find has order 3. Such a subgroup can be the one generated by r. And then 
we know that |G:<r>|=2 and s is not in <r>. Lets consider the cosets s<r> and <r>s. In both cases, we 
know that since cosets partition the group and there are 2, they are both the complement of <r>. 
Therefore, we know that 𝐺 = {𝑒, 𝑟, 𝑟2, 𝑠, 𝑠𝑟, 𝑟2} = {𝑒, 𝑟, 𝑟2, 𝑠, 𝑟𝑠, 𝑟2𝑠}. We know that 𝑠𝑟 is living in the 
complement of <r> and thus also in <r>s, so we have 3 cases: Either 𝑠𝑟 = 𝑠, 𝑠𝑟 = 𝑟𝑠, 𝑠𝑟 = 𝑟2𝑠. The first 
one is nonsense since r is not the identity, the second one would mean we have 𝐶6 by the direct 
product theorem (immediately since s and r commute), and the third one would mean we have 𝐷6. 
This is the smallest non-abelian group. 

Lecture 15: 

Now order 7 is trivial due to being prime again so we will do order 8 now. 

We know that 𝐶2 ⨯ 𝐶2 ⨯ 𝐶2, 𝐶4 ⨯ 𝐶2, 𝐶8, 𝐷8 are distinct groups of order 8. Is this all of them? The answer 
turns out to be no. 

We will now define the quaternion group 𝑄8. This group consists of the following matrices: 

𝐼2, −𝐼2, (
±𝑖 0
0 ∓𝑖

) , (
0 ±1

∓1 0
) , (

0 ±𝑖
±𝑖 0

). One can check that this is indeed a group not isomorphic to 

any of our other order 8 groups, we will come back to this. People usually talk about this group in a 

different way: We call I=1, -I=-1, (±𝑖 0
0 ∓𝑖

) = ±𝑖, (
0 ±1

∓1 0
) = ±𝑗, (

0 ±𝑖
±𝑖 0

) = ±𝑘. 

By multiplying out these matrices, we can see that 𝑖2 = 𝑗2 = 𝑘2 = −1, (−1)𝑖 = −𝑖 𝑒𝑡𝑐, 𝑖𝑗 = 𝑘,  

𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗. Notice the similarity to the cross product on the basis vectors. Also -1 commutes with 
everything. This is called the Quaternion group. This is not abelian (ij does not equal ji) so if it is on our 
list the only thing it could be isomorphic to is 𝐷8. But 𝑄8 has 1 element of order 2 and 𝐷8 has 5, so the 
quaternion group really is different. We will now prove that we have all the groups of order 8. 

By Lagrange, every element has order 1, 2, 4 or 8. If there is an element of order 8 we have 𝐶8 so we’re 
done. There certainly are elements of order 2 by Cauchy’s theorem. We may not have an element of 
order 4 though – It could be the case that every element except the identity has order 2. Such a group 
must be abelian by the last lecture, so we can choose elements a, b, c where c is not ab and none are 
the identity and none are equal to eachother, then consider the subgroups generated by these, and 
use the direct product theorem twice to get that the group must be isomorphic to 𝐶2 ⨯ 𝐶2 ⨯ 𝐶2. 

Therefore we may suppose that there is an element of order 4 which we will call a and that there is no 
element of order 8. Lets consider some b not in <a>. Recall that since |G:<a>|=2, the left coset that is 
not <a> is the same as the corresponding right coset, as we did last lecture. Ie, b<a>=<a>b. This 
means that 𝑏𝑎 = 𝑎𝑖𝑏 where i is either 0, 1, 2 or 3. i cannot be 0 since a is not the identity so we really 
have 3 cases. If i=1, ba=ab so we can easily show that 𝑏𝑎𝑗 = 𝑎𝑗𝑏 for any j so G is abelian. By the direct 
product theorem on <b> and <a> we must have 𝐶4 ⨯ 𝐶2 if b has order 2. Otherwise, b has order 4. In 
this case 𝑏2 = 𝑎2 since if 𝑏2 = 𝑏𝑎𝑗  then 𝑏 ∈< 𝑎 >, and if 𝑏2 = 𝑎𝑗  with j not 2 then b has the wrong 
order. In this case, 𝑎𝑏−1 is an element of order 2, so by the direct product theorem on < 𝑎𝑏−1 >, 

< 𝑎 >, we have 𝐶4 ⨯ 𝐶2. 



The next case is that 𝑏𝑎 = 𝑎2𝑏. Rearranging we get 𝑏𝑎𝑏−1 = 𝑎2. But this is a problem - 𝑎2 has order 2 
but 𝑏𝑎𝑏−1 does not have order 2 since if 𝑏𝑎2𝑏−1 = 𝑒 then 𝑎2 = 𝑏𝑒𝑏−1 = 𝑒, so we have a contradiction. 

In the next case, 𝑏𝑎 = 𝑎−1𝑏. If b has order 2, then in fact we must have 𝐷8 by a previous lemma. 

Note that if 𝑏2 = 𝑏𝑎𝑗  for any j then b would be in the subgroup generated by a. This is not possible, so 
𝑏2 ∈< 𝑎 >. So we have 2 cases: either 𝑏2 = 𝑒, 𝑏2 = 𝑎2. There are no other cases or else b would have 
to have order 8. We know we get 𝐷8 if 𝑏2 = 𝑒, so this leaves the case where 𝑏2 = 𝑎2. In this case, 
o(a)=o(b)=4 and 𝑏2 = 𝑎2 and 𝑏𝑎 = 𝑎−1𝑏. By setting i=a, j=b and k=ab, and −1 = 𝑎2 = 𝑏2, we have the 
Quaternion group. So we know all the groups of order up to 8. We have 

- 1 
- 𝐶2 
- 𝐶3 
- 𝐶4 
- 𝐾4 
- 𝐶5 
- 𝐶6 
- 𝐷6 = 𝑆3 
- 𝐶7 
- 𝐶8 
- 𝐶4 ⨯ 𝐶2 
- 𝐶2 ⨯ 𝐶2 ⨯ 𝐶2 
- 𝐷8 
- 𝑄8 

Definition (Normal subgroup): A subgroup H of G is normal if for every ℎ ∈ 𝐻, 𝑔 ∈ 𝐺, 𝑔ℎ𝑔−1 ∈ 𝐻. We 
write 𝐻 ⊲ 𝐺, or 𝐻 ⊴ 𝐺 if we allow for H=G. 

Remark 

1. 1 ⊲ 𝐺 and 𝐺 ⊴ 𝐺 
2. If G is abelian and H is a subgroup of G then 𝐻 ⊴ 𝐺. 
3. < 𝑟 >⊲ 𝐷2𝑛 because if we conjugate by r, this is trivial, and (𝑠𝑟𝑎)𝑟𝑏(𝑠𝑟𝑎)−1 = 𝑠𝑟𝑏𝑠 = 𝑟−𝑏 
4. < 𝑠 > is not a normal subgroup of 𝐷2𝑛 because 𝑟𝑠𝑟−1 ≠ 𝑠. 

Proposition: Let 𝜙 be a homomorphism. Then if h is in the kernel of 𝜙 and g is in G, then 𝜙(𝑔ℎ𝑔−1) =

𝜙(𝑔)𝜙(ℎ)𝜙(𝑔−1) = 𝜙(𝑔)𝜙(𝑔)−1 by definition of the kernel = 𝑒, so 𝑔ℎ𝑔−1 is in the kernel. Therefore, 
kernels are always normal subgroups. 

Lecture 16: 

In fact, we can think of a normal subgroup as a subgroup which happens to be a union of conjugacy 
classes. 

Lemma: Normal subgroups are exactly those where the left cosets are the same as the right cosets. 
Proof: 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ⇔ 𝑔𝐻𝑔−1 = 𝐻 for all 𝑔 which is the definition of a normal subgroup. I just 
multiplied both sides by 𝑔−1. 

Theorem: If H is a normal subgroup of G then the set of cosets G/H is a group with operation 
(𝑔1𝐻)(𝑔2𝐻) = (𝑔1𝑔2)𝐻. 



Proof: We need to check that this does not depend on our choice of 𝑔1 and 𝑔2 to make sure our 
operation is well defined. 

Suppose 𝑔1𝐻 = 𝑔1′𝐻 and 𝑔2𝐻 = 𝑔2′𝐻. Then 𝐻𝑔2 = 𝐻𝑔2′. Then there are ℎ1, ℎ2 in H such that           
𝑔1 = 𝑔1

′ ℎ1 and 𝑔2 = ℎ2𝑔2′. Therefore 𝑔1𝑔2 = (𝑔1
′ ℎ1)(ℎ2𝑔2

′ ) = 𝑔1
′ (ℎ1ℎ2)𝑔2

′ = (𝑔1
′ )(𝑔2

′ )ℎ3 for some ℎ3 in 
H. So we have the same coset. 

Now, associativity is inherited. We have H as the identity coset. And we can check the subgroup 
criterion: For some 𝑔1𝐻, 𝑔2𝐻, we have that 𝑔1𝑔2

−1𝐻 is in the group. 

Definition: The quotient group G/H for a normal subgroup H is the group of cosets with respect to H 
under the operation as defined above. 

Example: The trivial group and the whole group are normal subgroups and they are the quotient 
groups of eachother. 

Example: Since ℤ under + is abelian, all its subgroups nℤ are normal. So the quotient group ℤ/nℤ is 
the set of cosets, which is actually isomorphic to 𝐶𝑛. The coset 1+nℤ generates this. 

Example: Let G be a group and let |G:H|=2. Then H is a normal subgroup with the same proof as above 
when we were classifying groups of order 6, since we have the gH=Hg criterion. 

Note: Just because 𝐷2𝑛/𝐶𝑛 ≅ 𝐶2 this does not mean that 𝐶2 ⨯ 𝐶𝑛 ≅ 𝐷2𝑛. So these operations are not 
inverses of eachother. 

However, 𝐴 ≅ 𝐵 ⨯ 𝐶 ⇒ 𝐴/𝐵 ≅ 𝐶. We will see a proof of this shortly. This is a consequence of the 
(First) isomorphism theorem. Note (for vectors and matrices purposes) that if 

 𝐵 ≅ (ℝ𝑎, +), 𝐶 ≅ (ℝ𝑏 , +), then 𝐵 ⨯ 𝐶 = (ℝ𝑎+𝑏 , +), and that any a-dimensional plane is isomorphic by 
rotation to ℝ𝑎. 

Theorem (Isomorphism theorem): If 𝜙 is a homomorphism then 𝐺/ker (𝜙) ≅ Im(𝜙). 

Proof: Since the kernel is normal, the image is a subgroup. Let 𝑓: 𝐺/ker (𝜙) → Im(𝜙) with the rule that 
we send the coset 𝑔𝑘𝑒𝑟(𝜙) → 𝜙(𝑔). We need to check that this is well defined, a homomorphism, 
injective and surjective. 

Well defined: Suppose 𝑔𝑘𝑒𝑟(𝜙) = ℎ𝑘𝑒𝑟(𝜙). Then 𝑔 = ℎ𝑘 for some k in the kernel of 𝜙. 𝑓(𝑔𝑘𝑒𝑟(𝜙)) =

𝜙(𝑔) = 𝜙(ℎ𝑘) = 𝜙(ℎ)𝜙(𝑘) = 𝜙(ℎ) since 𝑘 is in the kernel and 𝜙 is a homomorphism. But we have to 
check that f is also a homomorphism. The proof is: 𝑓((𝑔 ker(𝜙))(ℎ ker(𝜙))) = 𝑓(𝑔ℎ𝑘𝑒𝑟(𝜙)) =

𝜙(𝑔ℎ) = 𝜙(𝑔)𝜙(ℎ) = 𝑓(𝑔𝑘𝑒𝑟(𝜙))𝑓(ℎ𝑘𝑒𝑟(𝜙)). Proof that 𝑓 is injective. Let x be in the kernel of f so 
𝑓(𝑥𝑘𝑒𝑟(𝜙)) = 𝑒. Then 𝜙(𝑥) = 𝑒 by definition of f so x is in the kernel of 𝜙. Therefore x is part of the 
trivial coset, ie the identity coset, ie  𝑥𝑘𝑒𝑟(𝜙) = 𝑘𝑒𝑟 (𝜙). To prove surjectivity: For a typical element of 
𝐼𝑚(𝜙), 𝜙(𝑔) = 𝑓(𝑔𝑘𝑒𝑟(𝜙)), so done. 

Example: Because 𝑓(𝑥) = 𝑒
2𝜋𝑖𝑥

𝑛  is a homomorphism from ℤ → 𝐶𝑛 with image 𝐶𝑛 and kernel 𝑛ℤ, we get 
ℤ/𝑛ℤ ≅ 𝐶𝑛 by the isomorphism theorem. 

Similarly, let the complex unit circle be a group U under multiplication. Then the homomorphism from 
ℝ → 𝑈 by 𝑓(𝑥) = 𝑒2𝜋𝑖𝑥 has image U and kernel ℤ, so ℝ/ℤ ≅ U. 

Lecture 17: 



Definition: A group G is simple if the only normal subgroups of G are 1 and itself. An observation is 
every homomorphism from a simple group is either trivial or injective since the kernel is normal but 
cnanot be anything other than 1 or G by simplicity. 

Example: A cyclic group of prime order is simple. This is because there cannot be any subgroups other 
than 1 and itself, so certainly not any normal subgroups. 

Recently mathematicians have classified all finite simple groups but it is a massive piece of work that 
takes tens of thousands of pages that people are still working on writing down properly. We will now 
study permutations in more detail. Recall that a permutation of a set X is a bijection X to X and Sym(X) 
is the group of such permutations under composition. Now we’re getting into the theory of Rubik’s 
cubes. 

Definition: Any ordered list of k distinct elements in our set X determines a k-cycle. We just write it as 
a list like (𝑎1𝑎2 … 𝑎𝑘). What this does is takes 𝑎1 → 𝑎2, 𝑎2 → 𝑎3, … 𝑎𝑘 → 𝑎1. We can write a 
permutation by tracing the cycle of 1 and then tracing the cycle of another element that was not in 
that cycle until we are done and then expressing the permutation as a product of disjoint cycles. If 
something is sent to itself, by convention we don’t write it. 

Example: If 1, 2, 3, 4, 5, 6 is sent to 6, 3, 5, 4, 2, 1 we can write it as ( 1 6 ) ( 2 3 5 ). We can multiply 
cycles together and we need to start from the right. 

Example of multiplying cycles: Lets do (1 2)(1 3 2). Multiplying cycles means to compose them. If they 
are disjoint (ie consisting of different elements) there is not much we can do. 

Lets start from the right and trace where 1 goes to. It goes to 3 (second cycle) and then to nothing (first 
cycle). 3 goes to 2 (second cycle) which goes to 1 (first cycle). So we have a cycle (1 3). 2 should not 
move because we have a bijection. We can verify this: 2 goes to 1 and back to 2 again. So we have the 
product (1 2)(1 3 2)=(1 3). 

Example: (1 4 3 2)(2 4 3)=(1 4 2 3) which we can check using the same procedure as above. 

Remark: The cycle (𝑎2𝑎3 … 𝑎𝑘𝑎1) is trivially equal to (𝑎1𝑎2𝑎3 … 𝑎𝑘). But it is only in 𝑆3 that every 
permutation is a cycle. In 𝑆4, we may have something like (1 2)(3 4). These are disjoint because they 
share no elements. Note that disjoint cycles commute, and this is easy to see: The cycles are doing 
things to different elements so the order in which we do stuff does not matter since there is no 
interaction between the sets since they are disjoint. Eg, since (1 2) (3 4) is a product of disjoint cycles 
it is equal to (3 4) (1 2). The idea is we will write all finite groups as products of disjoint cycles. 

Theorem: Every permutation of a finite set is a product of disjoint cycles. 

Proof: We can do this constructively as above by picking an element and tracing where it goes and 
picking an untouched element and tracing that until we are done. 

Theorem: Every permutation of a finite set is a product of disjoint cycles in a unique way up to 
reordering the cycles and using (𝑎2𝑎3 … 𝑎𝑘𝑎1) = (𝑎1𝑎2𝑎3 … 𝑎𝑘), ie starting the cycle somewhere else. 

Proof: This result is intuitive but we will prove this formally. Before the proof, we will do an example. 
Lets try to multiply (1 2)(3 4)(5 6)(1 2 3 4 5 6). 1 goes to itself, 2 goes to 4, 4 goes to 6, 6 goes to 2 and 
we’re back. Now let’s try 3, it goes to itself and so does 5. So (1 2)(3 4)(5 6)(1 2 3 4 5 6)=(2 4 6). It is easy 



to see that we’re not gonna have any different product of disjoint cycles since that would imply an 
element is sent to a different element. Now we will actually prove uniqueness: 

Let <f> be the subgroup of permutations in Sym(x) generated by a permutation f. We know from earlier 
theory that the permutations in <f> acting on X partitions the set X into orbits. The orbit of an element i 
in x is 𝑖, 𝑓(𝑖), 𝑓(𝑓(𝑖)), … , 𝑓−1(𝑖). So these orbits really do decompose our permutation into disjoint 
cycles in the way that we want. The only sense in which this was not unique was the choise of orbit 
representatives (equivalent to shifting elements in a cycle) and the order in which we chose them 
(equivalent to shifting the order of cycles), so we have uniqueness up to those choices, exactly as 
required. 

Definition (cycle type): The cycle type of a permutation is the unordered list of the size of the disjoint 
cycles of that permutation. Eg, (1 6) (2 3 5) has cycle type {2, 3}. But we omit 1’s in the cycle types by 
convention because they’re not very interesting. 

Remark: The order of a permutation is the lowest common multiple of the numbers in the cycle type. 

Definition: A 2-cycle is also called a transposition. 

Theorem: The set of all transpositions generate the symmetry group on a finite set. 

Proof: We can write it as a product of disjoint cycles. But, eg, (1 2 3 4) = (1 2)(2 3)(3 4) and similarly we 
can decompose any cycle into transpositions. 

Alternative proof (by induction): It is clearly true for n=2. The only transposition is (2 1) and that 
generates 𝑆2. 

For the inductive step, assume that 𝑆𝑛−1 is generated by transpositions. Let ϭ be any element of 𝑆𝑛. If 
ϭ(n)=n, then ϭ is in 𝑆𝑛−1 so it is a product of transpositions. Otherwise, let ϒ be the transposition           
(n ϭ(n)). But ϒϭ(n)=n so ϒϭ is in the natural copy of 𝑆𝑛−1 sitting in 𝑆𝑛. Therefore, ϒϭ is a product of 
transpositions. But then so is ϒϒϭ since we just multiplied by a transposition, but ϒϒ=e since ϒ is a 
transposition, thus we have ϭ as a product of transpositions. So done. 

In fact, the generating set can be made by only swapping neihbouring things. This is called an adjacent 
transposition. To see why, it is because, eg, (1 4)=(1 2)(2 3)(3 4)(2 3)(1 2) 

Lecture 18: 

We see from the method above that any transposition can be written as not only a product of adjacent 
transpositions, but an odd number of them. 

Theorem: Permutations have a well defined parity – We get there by either and odd or even number of 
swaps and this cannot change. Equivalently we cannot get from the permutation back to itself in an 
odd number of swaps. 

Proof: See my vectors and matrices notes 

Alternative proof: 

We will show that we need an even number of adjacent transpositions to get to where we started, 
since after that if we had an odd number of transpositions we could turn it into an odd number of 
adjacent transpositions. 



A pair {i, j} in {1, 2, 3, … ,n} is an inversion of a permutation if i<j but ϭ(i)> ϭ(j). 

Lemma: If ϭ is a product of k transpositions, then k is the number of inversions of ϭ mod 2. 

Proof of lemma: (Induction on k) If k=1 and we have 1 transpositions we must have 1 inversion, if we 
have 0 transpositions we have 0 inversions. So we have base cases. Now we need to do the induction 
step. 

Lets call 𝜎 = 𝑇1𝜎′ where 𝑇1 swaps l with l+1 and 𝜎′ is a product of k-1 transpositions. We want to show 
that the number of inversions of 𝜎 is one more or one less than the number of inversions of 𝜎′. 
Anything not involving l or l+1 will not change. Consider the pair i, j such that 𝜎′(𝑖) = 𝑙, 𝜎′(𝑗) = 𝑙 + 1. 
Then we have that 𝜎(𝑖) = 𝑙 + 1 > 𝑙 = 𝜎(𝑗). Therefore the inversion status of the pair i,j will be 
reversed. For any other pair, the order will not be affected when we change 𝜎′ to 𝜎 as we will change 
between l and l+1 possibly but the other thing we change will stay more or less so we are done with 
the lemma. 

Therefore the number of inversions is like a “fingerprint” for how many swaps we have done. So this 
proves the original statement. In particular, the identity has 0 inversions so we have to have done an 
even number of transpositions or else we would have an odd number of inversions. 

Now we know why if we swap two pieces on a standard rubiks cube we cannot solve it using legal 
moves because all legal moves can be made from an even number of piece swaps (a rotation is the 
same as a 4-cycle of corners and 4-cycle of edges). 

Theorem (sign homomorphism): The map 𝑠𝑖𝑔𝑛: 𝑆𝑛 → 𝐶2 defined by sending the number of swaps k to 
(−1)𝑘 is a well defined homomorphism. 

Proof: It is well defined by the previous theorem. So we just need to check that it is actually a 
homomorphism. Note that 𝜙(𝜎1𝜎2) has 𝑘1 + 𝑘2 swaps from 𝜎1, 𝜎2 respectively. Then 

 𝜙(𝜎1)𝜙(𝜎2) = (−1)𝑘1(−1)𝑘2 = (−1)𝑘1+𝑘2 = 𝜙(𝜎1𝜎2). So done. 

Now we will define the alternating group as the kernel of this, ie the group of even permutations. We 
denote 𝐴𝑛 for this, and this is a normal subgroup of 𝑆𝑛 since it is a kernel and alternatively because it 
is half the size. 

Example: 𝐴3 = {𝑒, (1 2 3), (1 3 2)}, which is isomorphic to the rotations of a triangle. We get this by 
considering how we are permuting the vertices, or from the fact that there is only one group of order 3. 
In fact, 𝐴3 ≅ 𝐶3. 

Remark: The cycle type makes it easy to determine the sign of a permutation as we did with the 
Rubik’s cube example above. A k-cycle (𝑎1𝑎2 … 𝑎𝑘) can be written as (𝑎1𝑎𝑘)(𝑎1𝑎𝑘−1) … (𝑎1𝑎3)(𝑎1𝑎2) 
which has (𝑘 − 1) transpositions. So it is even if and only if k is odd. Therefore the product of two         
4-cycles is the product of two odd things which is even, justifying the example above. 

More generally, the cycle type (𝑘1, 𝑘2, … , 𝑘𝑙) is even if and only if the number of even k’s (which 
contribute an odd number of swaps) is even. 

Example: (2,2) is an even cycle type, (2,2,2) is an odd cycle type. Adding odd numbers to the cycle type 
changes nothing and each even number added or remove flips the sign of any permutation of the 
cycle type. 



Now we will study the conjugacy classes of 𝑆𝑛 and 𝐴𝑛. 

Proposition: The conjugacy classes of 𝑆𝑛 are exactly the cycle types. Elements are conjugate if and 
only if their cycle types are the same. 

Idea: If we move stuff around, then do some cycles, then move the stuff back, we still did the same 
cycles to stuff, just moved around. 

Proof: Let 𝜎1 = (𝑎1
1 … 𝑎𝑙1

1 ) … (𝑎1
𝑘 … 𝑎𝑙𝑘

𝑘 ) and let 𝜎2 have the same cycle type, so 

 𝜎2 = (𝑏1
1 … 𝑏𝑙1

1 ) … (𝑏1
𝑘 … 𝑏𝑙𝑘

𝑘 ) (both allowed as we can write permutations as products of disjoint 

cycles). If we include 1-cycles, then the things 𝑎𝑖
𝑗  are exactly all the elements 1 to n. We can now 

define a permutation T that sends 𝑎𝑖
𝑗  to 𝑏𝑖

𝑗. Now we want to consider 𝑇𝜎1𝑇−1: This sends 𝑏𝑖
𝑗  to 𝑎𝑖

𝑗  then 

to 𝑎𝑖+1 𝑚𝑜𝑑 𝑙𝑖

𝑗  then to 𝑏𝑖+1 𝑚𝑜𝑑 𝑙𝑖

𝑗 , so it does the same thing to each element as 𝜎2, so 𝜎1 and 𝜎2 are 

indeed conjugate, as required, and thus in the same conjugacy class. 

We need to show that if we have two conjugate permutations then they have to have the same cycle 
type. Because we’re out of time, we will do this part next lecture. 

Lecture 19: 

Finishing the proof that conjugate permutations are exactly those that have the same cycle type: 
Suppose 𝜎2 = 𝑇𝜎1𝑇−1. The above argument shows that if 𝜎1 = (𝑎1

1 … 𝑎𝑙1

1 ) … (𝑎1
𝑘 … 𝑎𝑙𝑘

𝑘 ) then we saw 

that if we write 𝑏𝑖
𝑗

= 𝑇(𝑎𝑖
𝑗
) then 𝜎2 = (𝑏1

1 … 𝑏𝑙1

1 ) … (𝑏1
𝑘 … 𝑏𝑙𝑘

𝑘 ) and thus will have the same cycle type. 
This works for any T because we can pick any b’s depending on where T sends the a’s even if T is 
chosen arbitrarily. This seems abstract but as last lecture there is an intuition for this. 

We can now count conjugacy classes in 𝑆𝑛 and 𝐴𝑛. Lets start with 𝑆3. Its only possible cycle types are 
(3) which has 2 elements and (2) which has the 3 “reflection” elements and e, since those are the only 
ways to partition 3 into cycle “classes” up to ordering. Therefore those are the three conjugacy 
classes. 

𝑆4 has conjugacy classes (4), (3), (2,2), (2), e. 

Example: The number of (2,2) cycles in 𝑆4 is 3 because the only possibilities are (1 4)(2 3), (1 3)(2 4) 
and (1 2)(3 4). 

Recall that if a group acts under conjugation, then the orbit stabiliser theorem implies that the size of 
the centraliser of an element equals the size of the group divided by the size of the orbit which is the 
size of the conjugacy class. 

Therefore, we can find all the centralisers, and we know (in fact we know this for general finite groups) 
that the size of a conjugacy class divides the order of the group. 

Example: The centraliser of (1 2)(3 4) has size 8 because it has to be 24 divided by 3 as 3 is the size of 
the conjugacy class. 

Indeed, if we try to make a list of elements that commute with (1 2)(3 4) we will know we are done 
when we have 8. We can write down {e, (1 2)(3 4), (1 2), (3 4), (1 3)(2 4), (1 4)(2 3), (1 4 2 3), (1 3 2 4)} 
which we can verify manually in theory. 

We can now make a table: 



Cycle type in 𝑆4 Size of conjugacy class Size of centraliser 
e 1 24 
(2) 6 4 
(3) 8 3 
(4) 6 4 
(2,2) 3 8 

Example: To find how many 3-cycles there are, we see that we can choose any 3 things to be cycled 

and then have 2 possible orders, so we get 2 (
4
3

) = 8. We can do a similar method for all of them. And 

we see that the size of the conjugacy classes add up to the size of the group which is 24, which 
suggests we have done this correctly. 

Lets now look at alternating groups: 

Lemma: Let 𝛾 ∈ 𝐴𝑛 

i) If some odd element of 𝑆𝑛 commutes with 𝛾 then the conjugacy class in 𝐴𝑛 of 𝛾 is equal to 
the conjugacy class in 𝑆𝑛 of 𝛾 

ii) If every element in 𝑆𝑛 that commutes with 𝛾 is even, then the conjugacy class splits into 2. 
We will find that 𝑐𝑐𝑙𝑆𝑛

(𝛾) = 𝑐𝑐𝑙𝐴𝑛
(𝛾) ∪ 𝑐𝑐𝑙𝐴𝑛

(𝑡𝛾𝑡−1) where t is any transposition. 

Proof: 

|𝑆𝑛| = |𝑐𝑐𝑙𝑆𝑛
(𝛾)||𝐶𝑆𝑛

(𝛾)|  

|𝐴𝑛| = |𝑐𝑐𝑙𝐴𝑛
(𝛾)||𝐶𝐴𝑛

(𝛾)| 

By the orbit stabiliser theorem. 

We can rearrange (using |𝑆𝑛| = 2|𝐴𝑛|) to get |𝑐𝑐𝑙𝑆𝑛
(𝛾)| = 2

|𝐶𝐴𝑛
(𝛾)|

|𝐶𝑆𝑛
(𝛾)|

|𝑐𝑐𝑙𝐴𝑛
(𝛾)| 

Now 𝐶𝐴𝑛
(𝛾) is exactly the even things that commute with 𝛾. This is equal to the kernel of 𝐶𝑆𝑛

(𝛾) under 
the sign permutation. The image has size 1 or 2, so by the isomorphism theorem the index 
|𝐶𝑆𝑛

(𝛾): 𝐶𝐴𝑛
(𝛾)| is either 1 or 2. 

If there is an odd element of 𝑆𝑛 in 𝐶𝑆𝑛
(𝛾) then that is exactly saying that 𝐶𝐴𝑛

(𝛾) ≠ 𝐶𝑆𝑛
(𝛾). Therefore 

this corresponds to the case where the index |𝐶𝑆𝑛
(𝛾): 𝐶𝐴𝑛

(𝛾)|  is 2, then |𝑐𝑐𝑙𝑆𝑛
(𝛾)| = |𝑐𝑐𝑙𝐴𝑛

(𝛾)| by the 
equation we got from orbit-stabiliser, which corresponds to case (i) of the lemma. 

Otherwise, the index is 1, which will imply |𝐶𝑆𝑛
(𝛾)| = |𝐶𝐴𝑛

(𝛾)| and |𝑐𝑐𝑙𝑆𝑛
(𝛾)| = 2|𝑐𝑐𝑙𝐴𝑛

(𝛾)|. Now pick 

an element ϭ in |𝑐𝑐𝑙𝑆𝑛
(𝛾)| not in |𝑐𝑐𝑙𝐴𝑛

(𝛾)|, then we know that |𝑐𝑐𝑙𝐴𝑛
(σ)| = |𝑐𝑐𝑙𝐴𝑛

(γ)| is the only 
possibility so it indeed splits into 2. 

Now let t be a transposition, then consider 𝑡𝛾𝑡−1. If this is in 𝑐𝑐𝑙𝐴𝑛
(σ), then there is an 𝛼 in 𝐴𝑛 with 

𝛼σ𝛼−1 = 𝑡𝛾𝑡−1, but then the problem is that 𝑡−1𝛼 = 𝑡𝛼 (since t is a transposition) commutes with 𝛾 
and is odd, contradicting the assumption in the lemma. 

Example: We want to decide if in 𝐴4 the conjugacy classes e, (2,2) and (3) break into 2. 

(3) must break into 2 since otherwise the centraliser would have size 1.5. e cannot break into 2 
because it has sice 1. There are 3 (2,2) cycles which cannot evenly split into 2. Representatives for the 
two new conjugacy classes of (3) are (1, 2, 3) and (3, 2, 1). 



Lecture 20: 

Lets now look at conjugacy in 𝑆5 and 𝐴5. In 𝑆5 we can count the cycle types, if we do it carefully we see 
that all of them are: 

e, (2), (3), (4), (5), (2,2), (2,3). 

Cycle type Size of ccl Size of centraliser 
e 1 120 
2 (

5
2

)=10 12 

3 2 ∗ (
5
3

)=20 6 

4 6 ∗ (
5
4

)=30 4 

5 24 5 
2,2 1

2
(

5
2

) (
3
2

)=15, half so we don’t 

double count swaps in the 
other order 

8 

2,3 20 (same as 3-cycles then 
forced to swap other 2) 

6 

As a sanity check we see that the sizes of the conjugacy classes indeed add up to 120. 

In 𝐴5, only e, (3), (5), and (2,2) remain, and we need to decide which conjugacy classes split into 2. e 
and (2,2) do not since they have an odd number of elements, (5) does because its centraliser would 
have 2.5 elements otherwise. So only (3) needs more careful analysis. Remember that a ccl will split 
exactly if we can find an odd thing that commutes with it. (4 5) commutes with (1 2 3) so the conjugacy 
class of (1 2 3) does not split. Now we can make a table of conjugacy classes in 𝐴5. 

Cycle type Size of ccl Size of centraliser 
e 1 60 
3 20 3 
5 12 (2 conjugacy classes) 5 
2,2 15 4 

The numbers 1, 20, 12, 12, 15 do add up to 60 which is reassuring. 

Theorem: 𝐴5 is simple (it has no non-trivial normal subgroups). 

Proof: Suppose N is a normal subgroup of 𝐴5. Then the order of N divides 60. But N has to be a union 
of conjugacy classes (for n in N, 𝑔𝑛𝑔−1 ∈ 𝑁 so ccl(n) is a subset of n). N also contains e. So here are 
the possible sizes of unions of conjugacy classes in 𝐴5. 

Possibilties: 

- 1+12=13 
- 1+12+15=28 
- 1+12+20=33 
- 1+12+15+20=48 
- 1+12+12=25 
- 1+12+12+15=40 
- 1+12+12+20=45 
- 1+15=16 



- 1+20=21 
- 1+15+20=36 

Those are all the possible sizes of non-trivial normal subgroups. None divide 60, so by Lagrange’s 
theorem we are done. 

Now we will study matrix groups. 

{𝑀𝑛(ℝ)} is the set of n*n matrices in the real numbers. This forms a group under addition, and under 
multiplication it is almost a group if we exclude matrices with determinant 0 to ensure existence of 
inverses of everything, since associativity is a known property of matrix multiplication. We write 
𝐺𝐿𝑛(ℝ) to mean the group of n*n invertible real matrices under multiplication. 

Determinant is a homomorphism from this group to the non-zero reals under multiplication as seen 
as an example when we defined homomorphisms. We can get a kernel of this to make a subgroup: We 
can write 𝑆𝐿𝑛(ℝ) to mean the group of matrices with determinant 1 and real entries under 
multiplication. By the isomorphism theorem the quotient of this isomorphic to the non-zero real 
numbers under multiplication. 

Everything here can be done with ℝ replaced with ℂ. 

See vectors and matrices to see what it means for matrices to be similar. But notice that this exactly 
means that they are conjugate! This conjugation action is basically change of basis. 

Proposition: Let V be an n-dimensional real vector space (See vectors and matrices to see what this 
means) and a be a linear map V to V. If A is an n*n matrix that represents a in some basis, then the 
orbit of A in 𝐺𝐿𝑛(ℝ) under conjugation, ie the set 𝑃𝐴𝑃−1 is exactly all the matrices that represent a. 
This is because the set of invertible matrices P is exactly the set of linearly independent bases we can 
represent a under, if this makes sense. 

Coordinate-independent alternative proof of proposition: A basis defined an isomorphism of n-
dimensional vector spaces V from ℝ𝑛 to V defined in the obvious way (component-wise). 

When we say “A represents a”, we mean that the isomorphisms in the right arrows are the same in this 
diagram below. We will finish this proof next lecture. 

 

Lecture 21: 



Now we write 𝑎 = 𝜙𝐴𝜙−1. Another basis corresponds to a different isomorphism 𝜓: ℝ𝑛 → 𝑉, whose 
basis vectors depends on where (0,0,…,1,…,0,0). 

The transformation 𝛽 = 𝜓−1𝑎𝜓 = 𝜓−1𝜙𝐴𝜙−1𝜓 = 𝑃𝐴𝑃−1 where 𝑃 = 𝜓−1𝜙, where 𝜓−1𝜙 is a linear 
map P to P that is represented by P in the standard basis. Thus the orbit consists exactly of matrices 
representing a in the different possible bases. P is invertible as it is a bijection V to V, its inverse is 
𝜙−1𝜓 which we know is also a bijection. 

We noticed that multiplication in the mobius group was like 2*2 matrix multiplication. We can now 
say, precisely, that 𝐺𝐿2(ℂ) is almost isomorphic to the mobius group with the obvious isomorphism.  

Proposition: The mobius is the isomorphic to the quotient group 𝐺𝐿2(ℂ)/ (
𝜆 0
0 𝜆

), and the latter is 

actually a normal subgroup. 

Proof: Lets define a map (𝑎 𝑏
𝑐 𝑑

) →
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 which is a homomorphism which we showed when we were 

looking at matrix multiplication. This is surjective and the kernel is when this is the identity, which is 
exactly when a=d and b=c=0 (as it is exactly when we fix 0, 1 and infinity), so the isomorphism 
theorem applies and we get the proposition. 

We define an orthogonal matrices to be matrices that preserve lengths of vectors under linear maps. 

Proof this is equivalent to other definitions: 

For vectors u,v we nave by simple algebra that 2(𝑢. 𝑣) = |𝑢|2 + |𝑣|2 − |𝑢 − 𝑣|2, so if lengths are 
preserved then we can substitute u for Au and v for Av into this equation and therefore dot products 
are preserved as well (RHS (right hand side) will be the same by length preservation so so is LHS). 
Conversely if we always have that Ax.Ay=x.y, then Ax.Ax=x.x, therefore the length of Ax equals the 
length of x. 

Proposition: This defintion is equivalent to the defintion that the columns form an orthonormal basis. 
This part will assume knowledge of what 𝛿𝑖𝑗 means and what a basis is – see vectors and matrices. 

Proof: Consider the standard {𝑒𝑖} basis. Then 𝛿𝑖𝑗 = 𝑒𝑖. 𝑒𝑗 = 𝐴𝑒𝑖. 𝐴𝑒𝑗  so the columns are orthonormal. 
Because of this, we know that columns orthonormal in A implies 𝐴𝑇𝐴 = 𝐼. But then if we assume this, 
we easily see that (𝐴𝑥. 𝐴𝑦) = 𝑥𝑇𝐴𝑇𝐴𝑦 = 𝑥𝑇𝑦 = 𝑥. 𝑦, so dot products are preserved, so this is the 
converse and we have the equivalence. 

Now we can see that orthogonal matrices form a group – products and inverses preserve distance and 
satisfy 𝐴𝑇𝐴 = 𝐼. Their determinant is always 1 or -1 since they are invertible (As 𝐷𝑒𝑡(𝐴) = 𝐷𝑒𝑡(𝐴𝑇) so 
𝐷𝑒𝑡(𝐴)2 = 1). 

Lecture 22: 

The special orthogonal group SO(n) is the group under multiplication of the orthogonal n*n matrices 
with determinant 1. Since the determinant of an orthogonal matrix is 1 or -1, this is essentially the 
kernel of the determinant homomorphism as a map from the orthogonal group to the determinant. 
This is a subgroup of the orthogonal group with index 2 (as there are orthogonal transformations with 
determinant -1, just take the identity and convert one of the 1’s to a -1). 

Note that any vector v in ℝ3 defines a plane perpendicular to it. We can note from Vectors and 
Matrices when we gave this general formula for reflections about spaces that the matrix reflecting 



about the normalized vector v (ie rotating 180 degrees around it) is given by 𝐼 − 2𝑣𝑣𝑇, then we see 
geometrically that if we take minus this we will end up with a reflection about the plane. Therefore we 
can write 2𝑣𝑣𝑇 − 𝐼 as a reflection about the plane, provided v is normalized. 

As a sanity check lets see algebraically why the reflection about the plane perpendicular to a unit 
vector v 2𝑣𝑣𝑇 − 𝐼 actually preserves lengths, in order to complement the idea that we know it 
geometrically. 

(2𝑣𝑣𝑇 − 𝐼)𝑥 = 2𝑣𝑣𝑇𝑥 − 𝐼𝑥 = 2𝑣(𝑣. 𝑥) − 𝑥 . |2𝑣(𝑣. 𝑥) − 𝑥|2 = (2𝑣(𝑣. 𝑥) − 𝑥). (2𝑣(𝑣. 𝑥) − 𝑥 ) =

4𝑣. 𝑣(𝑣. 𝑥)2 − 4(𝑣. 𝑥)2 + (𝑥. 𝑥) = (𝑥. 𝑥) = |𝑥|2 because v.v=1, so yes it preserves lengths. 

Note that in the basis with 𝑣 included and everything else perpendicular, our matrix will be 
represented by a diagonal matrix with 1 in all but 1 entry with -1, so the determinant of any reflection is 
-1. 

Theorem: Every matrix in O(n), ie the group of n*n orthogonal matrices, is a product of at most n 
reflections. 

Proof: Induction on n. This is not hard to see for n=1 where the only orthogonal matrices are (1) and     
(-1) which are products of 0 and 1 reflections respectively. 

Induction step: Fix 𝐴 ∈ 𝑂(𝑛). Consider the standard basis for ℝ𝑛. Let 𝑣 = 𝑒𝑛 − 𝐴𝑒𝑛. Then a reflection 
about the plane perpendicular to v will move 𝑒𝑛 to 𝐴𝑒𝑛, as we have defined v to be this way. If we start 
in the A-transformed world and then apply this, everything else will be perpendicular to 𝑒𝑛 since this is 
all orthogonal transformations. Therefore all the first n-1 transformed basis vectors will be in the 
natural copy of ℝ𝑛−1, which we can move back to their original positions with n-1 reflections by our 
induction hypothesis. Therefore we go from the transformed-world to the nothing-world in n 
reflections which we can just reverse. So done. 

We can use this theorem when n=2. Since reflections have determinant -1, everything in the special 
orthogonal group is a product of either 0 or 2 reflections since they have determinant 1. 

Lemma: If A is in SO(2) then it is a rotation about the origin. Otherwise it is a reflection 

Proof: If it is a product of 0 reflections it is the identity. If it is not in SO(2) then the number of 
reflections has to be 1 so we do have a reflectoin. If it is a product of 2 reflections we can write          
𝐴 = 𝑆𝑢𝑆𝑣 where S means reflect about this line. 𝑆𝑢𝑆𝑣𝑥 = 𝑥 means 𝑆𝑢𝑥 = 𝑆𝑣𝑥 since reflections are self 
inverse. But v is parallel to 𝑥 − 𝑆𝑣𝑥 and similarly for u, so they are parallel if this happens, which would 
mean we have the identity. Therefore any non-identity thing in SO(2) is a distance preserving 
transformation that only fixes the origin. The columns being orthonormal and the determinant being 1 

implies the matrix can be written as ( 𝑎 𝑏
−𝑏 𝑎

) with 𝑎2 + 𝑏2 = 1 so we can write a and b as 

sin(𝜃) , cos(𝜃) for some 𝜃. 

Lemma: Anything but the identity in SO(3) is a product of 2 reflections and is either the identity or a 
rotation about a line. 

Proof: Anything in SO(3) has to be the product of an even number of reflections, which means if it is 
not the identity it is a product of 2 reflections. For non parallel u and v the planes perpendicular to u 
and v through the origin intersect in a line. Therefore this line is fixed by the reflections. By considering 



what happens to two vectors perpendicular to those lines we see that those must rotate as they stay 
perpendicular to this line. 

Lecture 23: 

Now we will talk about platonic solids. While there are infinitely many regular 2 dimensional polygons 
(triangles, squares, pentagons, hexagons, etc) 

Definition: A convex polyhedron 𝑋 ∈ ℝ3 is a platonic solid if every face is a regular polygon of the same 
type, and the isomstries act transitively on all the faces, and if x is the midpoint of a face then the 
stabilizer of x under the isometries is isomorphic to the symmetries of the face. 

There are five platonic solids: The tetrahedron (4 triagnular faces), the octahedron (8 triangular faces), 
the icosahedron (20 triangular faces), the cube (6 square faces) and the dodecahedron (12 
pentagonal faces). You can prove this by going through the possibilities types of polygons and how 
many can meet at each vertex. 

Image of the platonic solids. 

We have five groups to identify for symmetries of these, but it actually turns out that there are only 
three distinct groups up to isomorphism. 

Two solids X and Y are dual if Y can be constructed from X by putting vertices in the center of each 
face and then joining vertices in adjacent faccts by edges. I’ll show what this means using the diagram 
below that shows that the cube and octahedron are dual. 

 

We can see geometrically that if we try to find the dual of the octahedron we will just get a smaller 
version of the cube. It turns out that the dodecahedron and icosohedron are dual as well, and the dual 
of a tetrahedron is itself. 

Dual things have isomorphic symmetry groups: We can see that any isometry of a cube is an isometry 
of the octahedron (from the diagram above) and vice versa, and since we have this double inclusion (X 
contained in Y and Y contained in X) of these finite groups it means they are the same. 



Note that the group of isometries of the tetrahedron is isomorphic to 𝑆4 as it is exactly the 
permutations of the 4 vertices. We can do any swap of 2 vertices by a reflection and thus we generate 
all of 𝑆4. Formally, there are 4 faces and each one has 6 symmetries so by orbit-stabiliser the size of G 
is 24. Now let G act on the vertices, then this defines a homomorphsim 𝐺 → 𝑆4 which is surjective 
(because we can get any permutation as mentioned above), and injective as the homomorphism only 
goes to the identity if all 4 vertices are fixed, and this is obviously the identity so the kernel is trivial, so 
we indeed have a bijection and thus an isomorphism. 

We want to identify group of rotational symmetries of the tetrahedron is 𝐺 ∩ 𝑆𝑂(3) 

Lemma: If 𝐻 is a subgroup of 𝑆𝑛 and 𝐻 has index 2 then 𝐻 = 𝐴𝑛. 

Proof: Subgroups of index 2 are always normal. We also have a homomorphism from 𝑆𝑛 → 𝐶2 = ±1 
with kernel H. If this homomorphism sent all transpotisions to 1 then since transpositions generate all 
of 𝑆𝑛 then the kernel would be the whole of 𝑆𝑛. So there is a transposition T that is sent to -1. But then 
all transpositions are conjugate to this, and thus are sent to -1 as 𝜙(𝐴𝐵𝐴−1) = 𝜙(𝐵) because the 
range of our homomorphism is an abelian groups so we can expand it using the definition of a 
homomorphism and cancel the conjugate things. So we are sent to 1 if and only if we have an even 
number of transpositions. So 𝐻 = 𝐴𝑛. 

By this lemma, the group of rotations of a tetrahedron is 𝐴4. The rotation group has index 2 because it 
is the kernel of the determinant homomorphism which has image 𝐶2. 

The cube has the same symmetry group G as the octahedron. Now by orbit-stabiliser G has size 48 (in 
fact we did this example ages ago when we introduced orbit-stabiliser). The group of rotations 
Htherefore has size 24. G actually acts on the set of the four long diagonals of the cube. We want to 
show that 𝜙: 𝐻 → 𝑆4 is surjective because then it will have to be injective as the sets have the same 
size. Since transpositions generate we just want to show that each one is in the image of 𝜙. Now 
rotate half a rotation about the axis through an edge and an opposite edge, this transposes two long 
diagonals. There are six such axes we can rotate about to swap a different set of long diagonals, but 
there are only six possible swaps of long diagonals so we achieve all six of them. We are missing the 
symmetry -I, but if we add this in it commutes with everything in 𝑆4, so by the direct product theorem 
our group is isomorphic to 𝑆4 ⨯ 𝐶2. 

Lecture 24: 

Now lets identify the symmetry group of the dodecahedron and therefore also the icosahedron.  

Let G be the isometry group of a dodecahedron acting on the faces. The orbit has size 12 and the 
stabiliser is isomorphic to 𝐷10 so it has size 10 so by orbit stabiliser we are looking at a group of order 
120. 

Now what we will do is a kind of genius thing. If we draw diagonals on the faces, they inscribe 5 cubes 
in the dodecahedron. I will just show a picture of this. There are a total of 60 diagonals on the faces 
and 12 edges per cube so there are 5 cubes total. Image below: 



Image: Cube in a dodecahedron 

The isometry group of the dodecahedron will act on the set of these cubes. We now have a 
homomorphism to 𝑆5 and we want to look at what the image is. 

Now if we rotate about a long diagonal we get a subgroup of order 3 since we have 3 faces meeting at 
that vertex. This permutes 3 of the cubes and fixes the 2 through that vertex. Therefore we have all 10 
3-cycles in the image by each of the 10 long diagonals, and their inverses, so we have all 20 3-cycles 
in 𝑆5. 

Claim: The set of 3-cycles generate 𝐴5 

Proof: We know that the subgroup generated by the 3-cycles is the whole of 𝐴5: eg (1 2 3)(1 3 4) =

(1 4)(2 3), and (1 2 3)(3 4 5) = (1 2 3 4 5), and similarly we can get all 2-2 and 5-cycles. Because of 
this, we know that the rotation group of the dodecahedron is isomorphic to 𝐴5. But now, by the same 
reason as the cube, the symmetries of a dodecahedron is isomorphic to the group 𝐴5 ⨯ 𝐶2. 


